Header

UZH-Logo

Maintenance Infos

MRI temporal acceleration techniques


Tsao, Jeffrey; Kozerke, Sebastian (2012). MRI temporal acceleration techniques. Journal of Magnetic Resonance Imaging (JMRI), 36(3):543-560.

Abstract

In recent years, there has been an explosive growth of magnetic resonance imaging (MRI) techniques that allow faster scan speed by exploiting temporal or spatiotemporal redundancy of the images. These techniques improve the performance of dynamic imaging significantly across multiple clinical applications, including cardiac functional examinations, perfusion imaging, blood flow assessment, contrast-enhanced angiography, functional MRI, and interventional imaging, among others. The scan acceleration permits higher spatial resolution, increased temporal resolution, shorter scan duration, or a combination of these benefits. Along with the exciting developments is a dizzying proliferation of acronyms and variations of the techniques. The present review attempts to summarize this rapidly growing topic and presents conceptual frameworks to understand these techniques in terms of their underlying mechanics and connections. Techniques from view sharing, keyhole, k-t, to compressed sensing are covered.

Abstract

In recent years, there has been an explosive growth of magnetic resonance imaging (MRI) techniques that allow faster scan speed by exploiting temporal or spatiotemporal redundancy of the images. These techniques improve the performance of dynamic imaging significantly across multiple clinical applications, including cardiac functional examinations, perfusion imaging, blood flow assessment, contrast-enhanced angiography, functional MRI, and interventional imaging, among others. The scan acceleration permits higher spatial resolution, increased temporal resolution, shorter scan duration, or a combination of these benefits. Along with the exciting developments is a dizzying proliferation of acronyms and variations of the techniques. The present review attempts to summarize this rapidly growing topic and presents conceptual frameworks to understand these techniques in terms of their underlying mechanics and connections. Techniques from view sharing, keyhole, k-t, to compressed sensing are covered.

Statistics

Citations

67 citations in Web of Science®
67 citations in Scopus®
Google Scholar™

Altmetrics

Downloads

0 downloads since deposited on 14 Feb 2013
0 downloads since 12 months

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:04 Faculty of Medicine > Institute of Biomedical Engineering
Dewey Decimal Classification:170 Ethics
610 Medicine & health
Language:English
Date:2012
Deposited On:14 Feb 2013 09:57
Last Modified:05 Apr 2016 16:26
Publisher:Wiley-Blackwell
ISSN:1053-1807
Publisher DOI:https://doi.org/10.1002/jmri.23640

Download

Content: Published Version
Filetype: PDF - Registered users only
Size: 17MB
View at publisher