Header

UZH-Logo

Maintenance Infos

Do dynamic-based MR knee kinematics methods produce the same results as static methods?


d'Entremont, Agnes G; Nordmeyer-Massner, Jurek A; Bos, Clemens; Wilson, David R; Pruessmann, Klaas P (2013). Do dynamic-based MR knee kinematics methods produce the same results as static methods? Magnetic Resonance in Medicine, 69(6):1634-1644.

Abstract

MR-based methods provide low risk, noninvasive assessment of joint kinematics; however, these methods often use static positions or require many identical cycles of movement. The study objective was to compare the 3D kinematic results approximated from a series of sequential static poses of the knee with the 3D kinematic results obtained from continuous dynamic movement of the knee. To accomplish this objective, we compared kinematic data from a validated static MR method to a fast static MR method, and compared kinematic data from both static methods to a newly developed dynamic MR method. Ten normal volunteers were imaged using the three kinematic methods (dynamic, static standard, and static fast). Results showed that the two sets of static results were in agreement, indicating that the sequences (standard and fast) may be used interchangeably. Dynamic kinematic results were significantly different from both static results in eight of 11 kinematic parameters: patellar flexion, patellar tilt, patellar proximal translation, patellar lateral translation, patellar anterior translation, tibial abduction, tibial internal rotation, and tibial anterior translation. Three-dimensional MR kinematics measured from dynamic knee motion are often different from those measured in a static knee at several positions, indicating that dynamic-based kinematics provides information that is not obtainable from static scans.

Abstract

MR-based methods provide low risk, noninvasive assessment of joint kinematics; however, these methods often use static positions or require many identical cycles of movement. The study objective was to compare the 3D kinematic results approximated from a series of sequential static poses of the knee with the 3D kinematic results obtained from continuous dynamic movement of the knee. To accomplish this objective, we compared kinematic data from a validated static MR method to a fast static MR method, and compared kinematic data from both static methods to a newly developed dynamic MR method. Ten normal volunteers were imaged using the three kinematic methods (dynamic, static standard, and static fast). Results showed that the two sets of static results were in agreement, indicating that the sequences (standard and fast) may be used interchangeably. Dynamic kinematic results were significantly different from both static results in eight of 11 kinematic parameters: patellar flexion, patellar tilt, patellar proximal translation, patellar lateral translation, patellar anterior translation, tibial abduction, tibial internal rotation, and tibial anterior translation. Three-dimensional MR kinematics measured from dynamic knee motion are often different from those measured in a static knee at several positions, indicating that dynamic-based kinematics provides information that is not obtainable from static scans.

Statistics

Citations

13 citations in Web of Science®
13 citations in Scopus®
Google Scholar™

Altmetrics

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:04 Faculty of Medicine > Institute of Biomedical Engineering
Dewey Decimal Classification:170 Ethics
610 Medicine & health
Language:English
Date:2013
Deposited On:14 Feb 2013 09:50
Last Modified:05 Apr 2016 16:26
Publisher:Wiley-Blackwell
ISSN:0740-3194
Publisher DOI:https://doi.org/10.1002/mrm.24425
PubMed ID:22847783

Download

Full text not available from this repository.
View at publisher

TrendTerms

TrendTerms displays relevant terms of the abstract of this publication and related documents on a map. The terms and their relations were extracted from ZORA using word statistics. Their timelines are taken from ZORA as well. The bubble size of a term is proportional to the number of documents where the term occurs. Red, orange, yellow and green colors are used for terms that occur in the current document; red indicates high interlinkedness of a term with other terms, orange, yellow and green decreasing interlinkedness. Blue is used for terms that have a relation with the terms in this document, but occur in other documents.
You can navigate and zoom the map. Mouse-hovering a term displays its timeline, clicking it yields the associated documents.

Author Collaborations