Header

UZH-Logo

Maintenance Infos

New insight into hyperthermic intraperitoneal chemotherapy: induction of oxidative stress dramatically enhanced tumor killing in in vitro and in vivo models


Lehmann, Kuno; Rickenbacher, Andreas; Jang, Jae-Hwi; Oberkofler, Christian E; Vonlanthen, René; von Boehmer, Lotta; Humar, Bostjan; Graf, Rolf; Gertsch, Philippe; Clavien, Pierre-Alain (2012). New insight into hyperthermic intraperitoneal chemotherapy: induction of oxidative stress dramatically enhanced tumor killing in in vitro and in vivo models. Annals of Surgery, 256(5):730-738.

Abstract

BACKGROUND:
The aim of hyperthermic intraperitoneal chemotherapy (HIPEC) is to eradicate microscopic residual tumor after radical surgical tumor excision in patients with peritoneal carcinomatosis. The common use of antineoplastic agents such as mitomycin C, doxorubicin, or oxaliplatin with hyperthermia fails to eradicate tumors in a significant subset of patients, and alternative approaches to target chemoresistant cells are needed. The induction of reactive oxygen species (ROS) by inhibiting the critical detoxification enzyme superoxide dismutase (SOD) during hyperthermia is an appealing approach to induce death of residual cancer cells.
METHODS:
Human and murine colon cancer cell lines were subjected to mild hyperthermia (40-42°C), and treated with chemotherapy, similar to clinical protocols. ROS were induced by the SOD inhibitor diethyldithiocarbamate (DDC), a metabolite of the drug disulfiram. In mice, peritoneal carcinomatosis use C57Bl/6 was induced in C57Bl/6 by intraperitoneal injection of syngenic tumor cells (MC38).
RESULTS:
Hyperthermia alone failed to kill cells but induced intracellular ROS and activated protective mechanisms. Chemotherapy conferred inconsistent cytotoxicity depending on the cell line and dose. In contrast, induction of ROS by DDC consistently activated apoptotic pathways, with increased cell death in combination with mild hyperthermia. In vivo, combined treatment with DDC and hyperthermia significantly delayed tumor progression in tumor-bearing mice. In addition, hyperthermic combined treatment with chemotherapy and DDC significantly improved animal survival compared with chemotherapy alone.
CONCLUSIONS:
Addition of DDC improves the efficacy of existing HIPEC protocols in a safe way and may open the door to a more effective, multimodal HIPEC.

Abstract

BACKGROUND:
The aim of hyperthermic intraperitoneal chemotherapy (HIPEC) is to eradicate microscopic residual tumor after radical surgical tumor excision in patients with peritoneal carcinomatosis. The common use of antineoplastic agents such as mitomycin C, doxorubicin, or oxaliplatin with hyperthermia fails to eradicate tumors in a significant subset of patients, and alternative approaches to target chemoresistant cells are needed. The induction of reactive oxygen species (ROS) by inhibiting the critical detoxification enzyme superoxide dismutase (SOD) during hyperthermia is an appealing approach to induce death of residual cancer cells.
METHODS:
Human and murine colon cancer cell lines were subjected to mild hyperthermia (40-42°C), and treated with chemotherapy, similar to clinical protocols. ROS were induced by the SOD inhibitor diethyldithiocarbamate (DDC), a metabolite of the drug disulfiram. In mice, peritoneal carcinomatosis use C57Bl/6 was induced in C57Bl/6 by intraperitoneal injection of syngenic tumor cells (MC38).
RESULTS:
Hyperthermia alone failed to kill cells but induced intracellular ROS and activated protective mechanisms. Chemotherapy conferred inconsistent cytotoxicity depending on the cell line and dose. In contrast, induction of ROS by DDC consistently activated apoptotic pathways, with increased cell death in combination with mild hyperthermia. In vivo, combined treatment with DDC and hyperthermia significantly delayed tumor progression in tumor-bearing mice. In addition, hyperthermic combined treatment with chemotherapy and DDC significantly improved animal survival compared with chemotherapy alone.
CONCLUSIONS:
Addition of DDC improves the efficacy of existing HIPEC protocols in a safe way and may open the door to a more effective, multimodal HIPEC.

Statistics

Citations

7 citations in Web of Science®
7 citations in Scopus®
Google Scholar™

Altmetrics

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:04 Faculty of Medicine > University Hospital Zurich > Clinic for Visceral and Transplantation Surgery
Dewey Decimal Classification:610 Medicine & health
Language:English
Date:2012
Deposited On:14 Feb 2013 15:55
Last Modified:05 Apr 2016 16:26
Publisher:Lippincott, Williams & Wilkins
ISSN:0003-4932
Publisher DOI:https://doi.org/10.1097/SLA.0b013e3182737517
PubMed ID:23095616

Download

Full text not available from this repository.
View at publisher

TrendTerms

TrendTerms displays relevant terms of the abstract of this publication and related documents on a map. The terms and their relations were extracted from ZORA using word statistics. Their timelines are taken from ZORA as well. The bubble size of a term is proportional to the number of documents where the term occurs. Red, orange, yellow and green colors are used for terms that occur in the current document; red indicates high interlinkedness of a term with other terms, orange, yellow and green decreasing interlinkedness. Blue is used for terms that have a relation with the terms in this document, but occur in other documents.
You can navigate and zoom the map. Mouse-hovering a term displays its timeline, clicking it yields the associated documents.

Author Collaborations