Header

UZH-Logo

Maintenance Infos

Roux-en-Y gastric bypass in mice—Surgical technique and characterisation


Seyfried, F; Lannoo, M; Gsell, W; Tremoleda, J L; Bueter, M; Olbers, T; Jurowich, C; Germer, C T; Roux, C W (2012). Roux-en-Y gastric bypass in mice—Surgical technique and characterisation. Obesity Surgery, 22(7):1117-1125.

Abstract

BACKGROUND:
A reproducible Roux-en-Y gastric bypass (RYGB) model in mice is needed to study the physiological alterations after surgery.
METHODS:
Male C57BL6 mice weighing 29.0 ± 0.8 g underwent either RYGB (n = 14) or sham operations (n = 6). RYGB surgery consisted of a small gastric pouch (~2 % of the initial stomach size), a biliopancreatic and alimentary limb of 10 cm each and a common channel of 15 cm. Animals had free access to standard chow in the postoperative period. Body mass and food intake were recorded for 60 days. Bomb calorimetry was used for faecal analysis. Anatomical rearrangement was assessed using planar X-ray fluoroscopy and computed tomography (CT) after oral Gastrografin® injection.
RESULTS:
RYGB surgery led to a sustained reduction in body weight compared to sham-operated mice (postoperative week 1: sham 27.8 ± 0.7 g vs. RYGB 26.5 ± 1.0 g, p = 0.008; postoperative week 8: sham 30.7 ± 0.8 g vs. RYGB 28.4 ± 1.1 g, p = 0.003). RYGB mice ate less compared to shams (sham 4.6 ± 0.2 g/day vs. RYGB 4.3 ± 0.4 g/day, p < 0.001). There were no differences in faecal mass (p = 0.13) and faecal energy content (p = 0.44) between RYGB and shams. CT scan demonstrated the expected anatomical rearrangement without leakage or stenosis. Fluoroscopy revealed rapid pouch emptying.
CONCLUSIONS:
RYGB with a small gastric pouch is technically feasible in mice. With this model in place, genetically manipulated mouse models could be used to study the physiological mechanisms involved with metabolic changes after gastric bypass.

Abstract

BACKGROUND:
A reproducible Roux-en-Y gastric bypass (RYGB) model in mice is needed to study the physiological alterations after surgery.
METHODS:
Male C57BL6 mice weighing 29.0 ± 0.8 g underwent either RYGB (n = 14) or sham operations (n = 6). RYGB surgery consisted of a small gastric pouch (~2 % of the initial stomach size), a biliopancreatic and alimentary limb of 10 cm each and a common channel of 15 cm. Animals had free access to standard chow in the postoperative period. Body mass and food intake were recorded for 60 days. Bomb calorimetry was used for faecal analysis. Anatomical rearrangement was assessed using planar X-ray fluoroscopy and computed tomography (CT) after oral Gastrografin® injection.
RESULTS:
RYGB surgery led to a sustained reduction in body weight compared to sham-operated mice (postoperative week 1: sham 27.8 ± 0.7 g vs. RYGB 26.5 ± 1.0 g, p = 0.008; postoperative week 8: sham 30.7 ± 0.8 g vs. RYGB 28.4 ± 1.1 g, p = 0.003). RYGB mice ate less compared to shams (sham 4.6 ± 0.2 g/day vs. RYGB 4.3 ± 0.4 g/day, p < 0.001). There were no differences in faecal mass (p = 0.13) and faecal energy content (p = 0.44) between RYGB and shams. CT scan demonstrated the expected anatomical rearrangement without leakage or stenosis. Fluoroscopy revealed rapid pouch emptying.
CONCLUSIONS:
RYGB with a small gastric pouch is technically feasible in mice. With this model in place, genetically manipulated mouse models could be used to study the physiological mechanisms involved with metabolic changes after gastric bypass.

Statistics

Citations

9 citations in Web of Science®
9 citations in Scopus®
Google Scholar™

Altmetrics

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:04 Faculty of Medicine > University Hospital Zurich > Clinic for Visceral and Transplantation Surgery
Dewey Decimal Classification:610 Medicine & health
Language:English
Date:2012
Deposited On:14 Feb 2013 15:11
Last Modified:05 Apr 2016 16:26
Publisher:Springer
ISSN:0960-8923
Publisher DOI:https://doi.org/10.1007/s11695-012-0661-9
PubMed ID:22527601

Download

Full text not available from this repository.
View at publisher

TrendTerms

TrendTerms displays relevant terms of the abstract of this publication and related documents on a map. The terms and their relations were extracted from ZORA using word statistics. Their timelines are taken from ZORA as well. The bubble size of a term is proportional to the number of documents where the term occurs. Red, orange, yellow and green colors are used for terms that occur in the current document; red indicates high interlinkedness of a term with other terms, orange, yellow and green decreasing interlinkedness. Blue is used for terms that have a relation with the terms in this document, but occur in other documents.
You can navigate and zoom the map. Mouse-hovering a term displays its timeline, clicking it yields the associated documents.

Author Collaborations