Header

UZH-Logo

Maintenance Infos

A performance test for boar taint compounds in live boars


Baes, C; Mattei, S; Luther, H; Ampuero, S; Sidler, X; Bee, G; Spring, P; Hofer, A (2013). A performance test for boar taint compounds in live boars. Animal, 7(05):714-720.

Abstract

Genetically reducing boar taint using low-taint lines is considered the most sustainable and economic long-term alternative to surgical castration of male pigs. Owing to the high heritability of the main boar taint components (androstenone, skatole and indole), breeding is an excellent tool for reducing the number of tainted carcasses. To incorporate boar taint into breeding programmes, standardized performance testing is required. The objective of this study was to develop and formally present a performance test for the main boar taint compounds on live breeding candidates. First, a standardized performance test for boar taint was established. A biopsy device was developed to extract small tissue samples (200 to 300 mg) from breeding candidates. Quantification of boar taint components from these small samples using specialized chemical extraction methods proved accurate and repeatable (r = 0.938). Following establishment of the method, biopsy samples of 516 live boars (100 to 130 kg live weight) were collected in the second step. Various mixed linear models were tested for each boar taint compound; models were ranked in terms of their information content. Pedigree information of 2245 ancestors of biopsied animals was included, and genetic parameters were estimated using univariate and multivariate models. Androstenone (in μg/g liquid fat (LF): mean = 0.578, σ = 0.527), skatole (in μg/g LF: mean = 0.033, σ = 0.002) and indole (in μg/g LF: mean = 0.032, σ = 0.002) levels obtained by biopsy were plausible. Heritability estimates for androstenone calculated with univariate (0.453) and multivariate (0.452) analyses were comparable to those in the literature. Heritabilities for skatole (0.495) and indole (0.550) were higher than that for androstenone. Genetic and phenotypic correlations were similar to those published previously. Our results show that data on boar taint compounds from small adipose samples obtained by biopsy provide similar genetic parameters as that described in the literature for larger samples and are therefore a reliable performance test for boar taint in live breeding candidates.

Abstract

Genetically reducing boar taint using low-taint lines is considered the most sustainable and economic long-term alternative to surgical castration of male pigs. Owing to the high heritability of the main boar taint components (androstenone, skatole and indole), breeding is an excellent tool for reducing the number of tainted carcasses. To incorporate boar taint into breeding programmes, standardized performance testing is required. The objective of this study was to develop and formally present a performance test for the main boar taint compounds on live breeding candidates. First, a standardized performance test for boar taint was established. A biopsy device was developed to extract small tissue samples (200 to 300 mg) from breeding candidates. Quantification of boar taint components from these small samples using specialized chemical extraction methods proved accurate and repeatable (r = 0.938). Following establishment of the method, biopsy samples of 516 live boars (100 to 130 kg live weight) were collected in the second step. Various mixed linear models were tested for each boar taint compound; models were ranked in terms of their information content. Pedigree information of 2245 ancestors of biopsied animals was included, and genetic parameters were estimated using univariate and multivariate models. Androstenone (in μg/g liquid fat (LF): mean = 0.578, σ = 0.527), skatole (in μg/g LF: mean = 0.033, σ = 0.002) and indole (in μg/g LF: mean = 0.032, σ = 0.002) levels obtained by biopsy were plausible. Heritability estimates for androstenone calculated with univariate (0.453) and multivariate (0.452) analyses were comparable to those in the literature. Heritabilities for skatole (0.495) and indole (0.550) were higher than that for androstenone. Genetic and phenotypic correlations were similar to those published previously. Our results show that data on boar taint compounds from small adipose samples obtained by biopsy provide similar genetic parameters as that described in the literature for larger samples and are therefore a reliable performance test for boar taint in live breeding candidates.

Statistics

Citations

7 citations in Web of Science®
8 citations in Scopus®
Google Scholar™

Altmetrics

Downloads

52 downloads since deposited on 07 Feb 2013
20 downloads since 12 months
Detailed statistics

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:05 Vetsuisse Faculty > Veterinary Clinic > Department of Farm Animals
Dewey Decimal Classification:570 Life sciences; biology
630 Agriculture
Language:English
Date:2013
Deposited On:07 Feb 2013 13:51
Last Modified:05 Apr 2016 16:28
Publisher:Cambridge University Press
ISSN:1751-7311
Free access at:Publisher DOI. An embargo period may apply.
Publisher DOI:https://doi.org/10.1017/S1751731112002273
PubMed ID:23211445

Download

Preview Icon on Download
Preview
Content: Published Version
Filetype: PDF
Size: 118kB
View at publisher