Header

UZH-Logo

Maintenance Infos

Immobilization of chondroitin sulfate to lipid membranes and its interactions with ECM proteins


Altgärde, Noomi; Becher, Jana; Möller, Stephanie; Weber, Franz E; Schnabelrauch, Matthias; Svedhem, Sofia (2013). Immobilization of chondroitin sulfate to lipid membranes and its interactions with ECM proteins. Journal of Colloid and Interface Science, 390(1):258-266.

Abstract

Glycosaminoglycans (GAGs) in the extracellular matrix (ECM) have multiple functions in tissues including providing support, mediating cell division and differentiation, and taking part in important interactions with proteins, e.g. growth factors. Studying GAG related interactions is inherently difficult and requires suitable interaction platforms. We show two strategies to covalently couple the GAG chondroitin sulfate (CS) to supported lipid bilayers (SLBs), either by (a) activating carboxy-functionalized phospholipids in the lipid bilayer, followed by the addition of hydrazide-functionalized CS, or by (b) activating naturally occurring carboxyl groups on CS prior to addition to an amino-functionalized SLB. Bilayer formation and subsequent immobilization was followed in real-time using the Quartz Crystal Microbalance with Dissipation monitoring, a technique that provides unique information when studying highly hydrated molecular films. The two strategies yielded thin CS films (in the nanometer range) with similar viscoelastic properties. Fluidity of the lipid bilayer was retained when CS was coupled. The application of the CS interaction platform was exemplified for type I collagen and the bone inducing growth factor bone morphogenetic protein-2 (BMP-2). The addition of collagen to immoblized CS resulted in soft layers whereas layers formed by addition of BMP-2 were denser, independent on the immobilization strategy used.

Abstract

Glycosaminoglycans (GAGs) in the extracellular matrix (ECM) have multiple functions in tissues including providing support, mediating cell division and differentiation, and taking part in important interactions with proteins, e.g. growth factors. Studying GAG related interactions is inherently difficult and requires suitable interaction platforms. We show two strategies to covalently couple the GAG chondroitin sulfate (CS) to supported lipid bilayers (SLBs), either by (a) activating carboxy-functionalized phospholipids in the lipid bilayer, followed by the addition of hydrazide-functionalized CS, or by (b) activating naturally occurring carboxyl groups on CS prior to addition to an amino-functionalized SLB. Bilayer formation and subsequent immobilization was followed in real-time using the Quartz Crystal Microbalance with Dissipation monitoring, a technique that provides unique information when studying highly hydrated molecular films. The two strategies yielded thin CS films (in the nanometer range) with similar viscoelastic properties. Fluidity of the lipid bilayer was retained when CS was coupled. The application of the CS interaction platform was exemplified for type I collagen and the bone inducing growth factor bone morphogenetic protein-2 (BMP-2). The addition of collagen to immoblized CS resulted in soft layers whereas layers formed by addition of BMP-2 were denser, independent on the immobilization strategy used.

Statistics

Citations

7 citations in Web of Science®
6 citations in Scopus®
Google Scholar™

Altmetrics

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:04 Faculty of Medicine > University Hospital Zurich > Division of Surgical Research
04 Faculty of Medicine > Center for Dental Medicine > Clinic for Cranio-Maxillofacial Surgery
Dewey Decimal Classification:610 Medicine & health
Language:English
Date:15 January 2013
Deposited On:06 Feb 2013 17:11
Last Modified:11 Nov 2017 00:17
Publisher:Elsevier
ISSN:0021-9797
Publisher DOI:https://doi.org/10.1016/j.jcis.2012.07.063
PubMed ID:23026301

Download

Full text not available from this repository.
View at publisher