Header

UZH-Logo

Maintenance Infos

Demand-adapted regulation of early hematopoiesis in infection and inflammation - Zurich Open Repository and Archive


Takizawa, H; Boettcher, S; Manz, M G (2012). Demand-adapted regulation of early hematopoiesis in infection and inflammation. Blood, 119(13):2991-3002.

Abstract

During systemic infection and inflammation, immune effector cells are in high demand and are rapidly consumed at sites of need. Although adaptive immune cells have high proliferative potential, innate immune cells are mostly postmitotic and need to be replenished from bone marrow (BM) hematopoietic stem and progenitor cells. We here review how early hematopoiesis has been shaped to deliver efficient responses to increased need. On the basis of most recent findings, we develop an integrated view of how cytokines, chemokines, as well as conserved pathogen structures, are sensed, leading to divisional activation, proliferation, differentiation, and migration of hematopoietic stem and progenitor cells, all aimed at efficient contribution to immune responses and rapid reestablishment of hematopoietic homeostasis. We also outline how chronic inflammatory processes might impinge on hematopoiesis, potentially fostering hematopoietic stem cell diseases, and, how clinical benefit is and could be achieved by learning from nature.

Abstract

During systemic infection and inflammation, immune effector cells are in high demand and are rapidly consumed at sites of need. Although adaptive immune cells have high proliferative potential, innate immune cells are mostly postmitotic and need to be replenished from bone marrow (BM) hematopoietic stem and progenitor cells. We here review how early hematopoiesis has been shaped to deliver efficient responses to increased need. On the basis of most recent findings, we develop an integrated view of how cytokines, chemokines, as well as conserved pathogen structures, are sensed, leading to divisional activation, proliferation, differentiation, and migration of hematopoietic stem and progenitor cells, all aimed at efficient contribution to immune responses and rapid reestablishment of hematopoietic homeostasis. We also outline how chronic inflammatory processes might impinge on hematopoiesis, potentially fostering hematopoietic stem cell diseases, and, how clinical benefit is and could be achieved by learning from nature.

Citations

124 citations in Web of Science®
124 citations in Scopus®
Google Scholar™

Altmetrics

Downloads

41 downloads since deposited on 18 Feb 2013
5 downloads since 12 months
Detailed statistics

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:04 Faculty of Medicine > University Hospital Zurich > Clinic for Hematology
04 Faculty of Medicine > University Hospital Zurich > Clinic for Immunology
Dewey Decimal Classification:610 Medicine & health
Language:English
Date:29 March 2012
Deposited On:18 Feb 2013 14:11
Last Modified:05 Apr 2016 16:28
Publisher:American Society of Hematology
ISSN:0006-4971
Free access at:PubMed ID. An embargo period may apply.
Publisher DOI:https://doi.org/10.1182/blood-2011-12-380113
PubMed ID:22246037

Download

Preview Icon on Download
Preview
Content: Published Version
Filetype: PDF
Size: 855kB
View at publisher

TrendTerms

TrendTerms displays relevant terms of the abstract of this publication and related documents on a map. The terms and their relations were extracted from ZORA using word statistics. Their timelines are taken from ZORA as well. The bubble size of a term is proportional to the number of documents where the term occurs. Red, orange, yellow and green colors are used for terms that occur in the current document; red indicates high interlinkedness of a term with other terms, orange, yellow and green decreasing interlinkedness. Blue is used for terms that have a relation with the terms in this document, but occur in other documents.
You can navigate and zoom the map. Mouse-hovering a term displays its timeline, clicking it yields the associated documents.

Author Collaborations