Header

UZH-Logo

Maintenance Infos

The evolution of XY recombination: sexually antagonistic selection versus deleterious mutation load


Grossen, Christine; Neuenschwander, Samuel; Perrin, Nicolas (2012). The evolution of XY recombination: sexually antagonistic selection versus deleterious mutation load. Evolution, 66(10):3155-3166.

Abstract

Recombination arrest between X and Y chromosomes, driven by sexually antagonistic genes, is expected to induce their progressive differentiation. However, in contrast to birds and mammals (which display the predicted pattern), most cold-blooded vertebrates have homomorphic sex chromosomes. Two main hypotheses have been proposed to account for this, namely high turnover rates of sex-determining systems and occasional XY recombination. Using individual-based simulations, we formalize the evolution of XY recombination (here mediated by sex reversal; the fountain-of-youth model) under the contrasting forces of sexually antagonistic selection and deleterious mutations. The shift between the domains of elimination and accumulation occurs at much lower selection coefficients for the Y than for the X. In the absence of dosage compensation, mildly deleterious mutations accumulating on the Y depress male fitness, thereby providing incentives for XY recombination. Under our settings, this occurs via demasculinization of the Y, allowing recombination in XY (sex-reversed) females. As we also show, this generates a conflict with the X, which coevolves to oppose sex reversal. The resulting rare events of XY sex reversal are enough to purge the Y from its load of deleterious mutations. Our results support the fountain of youth as a plausible mechanism to account for the maintenance of sex-chromosome homomorphy.

Abstract

Recombination arrest between X and Y chromosomes, driven by sexually antagonistic genes, is expected to induce their progressive differentiation. However, in contrast to birds and mammals (which display the predicted pattern), most cold-blooded vertebrates have homomorphic sex chromosomes. Two main hypotheses have been proposed to account for this, namely high turnover rates of sex-determining systems and occasional XY recombination. Using individual-based simulations, we formalize the evolution of XY recombination (here mediated by sex reversal; the fountain-of-youth model) under the contrasting forces of sexually antagonistic selection and deleterious mutations. The shift between the domains of elimination and accumulation occurs at much lower selection coefficients for the Y than for the X. In the absence of dosage compensation, mildly deleterious mutations accumulating on the Y depress male fitness, thereby providing incentives for XY recombination. Under our settings, this occurs via demasculinization of the Y, allowing recombination in XY (sex-reversed) females. As we also show, this generates a conflict with the X, which coevolves to oppose sex reversal. The resulting rare events of XY sex reversal are enough to purge the Y from its load of deleterious mutations. Our results support the fountain of youth as a plausible mechanism to account for the maintenance of sex-chromosome homomorphy.

Statistics

Citations

12 citations in Web of Science®
12 citations in Scopus®
Google Scholar™

Altmetrics

Downloads

1 download since deposited on 12 Feb 2013
0 downloads since 12 months
Detailed statistics

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:07 Faculty of Science > Institute of Evolutionary Biology and Environmental Studies
Dewey Decimal Classification:570 Life sciences; biology
590 Animals (Zoology)
Language:English
Date:2012
Deposited On:12 Feb 2013 11:59
Last Modified:05 Apr 2016 16:29
Publisher:Wiley-Blackwell
ISSN:0014-3820
Publisher DOI:https://doi.org/10.1111/j.1558-5646.2012.01661.x
PubMed ID:23025605

Download