Header

UZH-Logo

Maintenance Infos

Establishing a probabilistic reversal learning test in mice: Evidence for the processes mediating reward-stay and punishment-shift behaviour and for their modulation by serotonin


Ineichen, C; Sigrist, H; Spinelli, S; Lesch, K P; Sautter, E; Seifritz, E; Pryce, C R (2012). Establishing a probabilistic reversal learning test in mice: Evidence for the processes mediating reward-stay and punishment-shift behaviour and for their modulation by serotonin. Neuropharmacology, 63(6):1012-1021.

Abstract

Valid animal models of psychopathology need to include behavioural readouts informed by human findings. In the probabilistic reversal learning (PRL) task, human subjects are confronted with serial reversal of the contingency between two operant stimuli and reward/punishment and, superimposed on this, a low probability (0.2) of punished correct responses/rewarded incorrect responses. In depression, reward-stay and reversals completed are unaffected but response-shift following punished correct response trials, referred to as negative feedback sensitivity (NFS), is increased. The aims of this study were to: establish an operant spatial PRL test appropriate for mice; obtain evidence for the processes mediating reward-stay and punishment-shift responding; and assess effects thereon of genetically- and pharmacologically-altered serotonin (5-HT) function. The study was conducted with wildtype (WT) and heterozygous mutant (HET) mice from a 5-HT transporter (5-HTT) null mutant strain. Mice were mildly food deprived and reward was sugar pellet and punishment was 5-s time out. Mice exhibited high motivation and adaptive reversal performance. Increased probability of punished correct response (PCR) trials per session (p = 0.1, 0.2 or 0.3) led to monotonic decrease in reward-stay and reversals completed, suggesting accurate reward prediction. NFS differed from chance-level at p PCR = 0.1, suggesting accurate punishment prediction, whereas NFS was at chance-level at p = 0.2–0.3. At p PCR = 0.1, HET mice exhibited lower NFS than WT mice. The 5-HTT blocker escitalopram was studied acutely at p PCR = 0.2: a low dose (0.5–1.5 mg/kg) resulted in decreased NFS, increased reward-stay and increased reversals completed, and similarly in WT and HET mice. This study demonstrates that testing PRL in mice can provide evidence on the regulation of reward and punishment processing that is, albeit within certain limits, of relevance to human emotional-cognitive processing, its dysfunction and treatment.

Abstract

Valid animal models of psychopathology need to include behavioural readouts informed by human findings. In the probabilistic reversal learning (PRL) task, human subjects are confronted with serial reversal of the contingency between two operant stimuli and reward/punishment and, superimposed on this, a low probability (0.2) of punished correct responses/rewarded incorrect responses. In depression, reward-stay and reversals completed are unaffected but response-shift following punished correct response trials, referred to as negative feedback sensitivity (NFS), is increased. The aims of this study were to: establish an operant spatial PRL test appropriate for mice; obtain evidence for the processes mediating reward-stay and punishment-shift responding; and assess effects thereon of genetically- and pharmacologically-altered serotonin (5-HT) function. The study was conducted with wildtype (WT) and heterozygous mutant (HET) mice from a 5-HT transporter (5-HTT) null mutant strain. Mice were mildly food deprived and reward was sugar pellet and punishment was 5-s time out. Mice exhibited high motivation and adaptive reversal performance. Increased probability of punished correct response (PCR) trials per session (p = 0.1, 0.2 or 0.3) led to monotonic decrease in reward-stay and reversals completed, suggesting accurate reward prediction. NFS differed from chance-level at p PCR = 0.1, suggesting accurate punishment prediction, whereas NFS was at chance-level at p = 0.2–0.3. At p PCR = 0.1, HET mice exhibited lower NFS than WT mice. The 5-HTT blocker escitalopram was studied acutely at p PCR = 0.2: a low dose (0.5–1.5 mg/kg) resulted in decreased NFS, increased reward-stay and increased reversals completed, and similarly in WT and HET mice. This study demonstrates that testing PRL in mice can provide evidence on the regulation of reward and punishment processing that is, albeit within certain limits, of relevance to human emotional-cognitive processing, its dysfunction and treatment.

Statistics

Citations

15 citations in Web of Science®
15 citations in Scopus®
Google Scholar™

Altmetrics

Downloads

150 downloads since deposited on 20 Feb 2013
25 downloads since 12 months
Detailed statistics

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:04 Faculty of Medicine > Psychiatric University Hospital Zurich > Clinic for Psychiatry, Psychotherapy, and Psychosomatics
04 Faculty of Medicine > Neuroscience Center Zurich
Dewey Decimal Classification:570 Life sciences; biology
610 Medicine & health
Language:English
Date:2012
Deposited On:20 Feb 2013 10:10
Last Modified:05 Apr 2016 16:30
Publisher:Pergamon
ISSN:0028-3908
Publisher DOI:https://doi.org/10.1016/j.neuropharm.2012.07.025

Download

Preview Icon on Download
Preview
Content: Accepted Version
Filetype: PDF
Size: 257kB
View at publisher

TrendTerms

TrendTerms displays relevant terms of the abstract of this publication and related documents on a map. The terms and their relations were extracted from ZORA using word statistics. Their timelines are taken from ZORA as well. The bubble size of a term is proportional to the number of documents where the term occurs. Red, orange, yellow and green colors are used for terms that occur in the current document; red indicates high interlinkedness of a term with other terms, orange, yellow and green decreasing interlinkedness. Blue is used for terms that have a relation with the terms in this document, but occur in other documents.
You can navigate and zoom the map. Mouse-hovering a term displays its timeline, clicking it yields the associated documents.

Author Collaborations