Swiss German intonation patterns

Leemann, Adrian

Abstract: Switzerland is renowned for having a diverse linguistic and dialectal landscape in a comparatively small and confined space. Possibly, this is one of the reasons why Swiss German dialects have been investigated thoroughly on various linguistic levels. Nevertheless, natural speech intonation has, until today, not been examined systematically. The aim of this study is to analyze natural Swiss German fundamental frequency behavior according to linguistic, paralinguistic, and extralinguistic variables, using statistical tests against the backdrop of detecting dialect-specific patterns as well as cross-dialectal differences. The intonation analyses were conducted with the mathematically-formulated Command-Response model. This is the first large-scale study that applies this framework on a large corpus of natural, dialectal speech. This contribution provides a holistic account of the truly multilayered features of natural speech intonation and brings to light detailed underlying patterns of Swiss German dialectal fundamental frequency behavior. The book is mainly targeted at linguists, speech scientists, as well as dialectologists.

Posted at the Zurich Open Repository and Archive, University of Zurich
ZORA URL: https://doi.org/10.5167/uzh-73620
Cover Image

Originally published at:
Switzerland is renowned for having a diverse linguistic and dialectal landscape in a comparatively small and confined space. Possibly, this is one of the reasons why Swiss German dialects have been investigated thoroughly on various linguistic levels. Nevertheless, natural speech intonation has, until today, not been examined systematically. The aim of this study is to analyze natural Swiss German fundamental frequency behavior according to linguistic, paralinguistic, and extralinguistic variables, using statistical tests against the backdrop of detecting dialect-specific patterns as well as cross-dialectal differences. The intonation analyses were conducted with the mathematically-formulated Command-Response model. This is the first large-scale study that applies this framework on a large corpus of natural, dialectal speech. This contribution provides a holistic account of the truly multilayered features of natural speech intonation and brings to light detailed underlying patterns of Swiss German dialectal fundamental frequency behavior. The book is mainly targeted at linguists, speech scientists, as well as dialectologists.
Swiss German Intonation Patterns
Studies in Language Variation

The series aims to include empirical studies of linguistic variation as well as its description, explanation and interpretation in structural, social and cognitive terms. The series will cover any relevant subdiscipline: sociolinguistics, contact linguistics, dialectology, historical linguistics, anthropology/anthropological linguistics. The emphasis will be on linguistic aspects and on the interaction between linguistic and extralinguistic aspects — not on extralinguistic aspects (including language ideology, policy etc.) as such.

For an overview of all books published in this series, please see http://benjamins.com/catalog/silv

Editors

Peter Auer
Universität Freiburg

Frans Hinskens
Meertens Instituut &
Vrije Universiteit,
Amsterdam

Paul Kerswill
Lancaster University

Editorial Board

Jannis K. Androutsopoulos
University of Hamburg

Arto Anttila
Stanford University

Gaetano Berruto
L’Università di Torino

Paul Boersma
University of Amsterdam

Jenny Cheshire
University of London

Gerard Docherty
Newcastle University

Penny Eckert
Stanford University

William Foley
University of Sydney

Peter Gilles
University of Luxembourg

Barbara Horvath
University of Sydney

Brian Joseph
The Ohio State University

Johannes Kabatek
Eberhard Karls Universität
Tübingen

Juhan Klemola
University of Tampere

Miklós Kontra
University of Szeged

Bernard Laks
CNRS-Université Paris X
Nanterre

Maria-Rosa Lloret
Universitat de Barcelona

K. K. Luke
The University of Hong Kong

Rajend Mesthrie
University of Cape Town

Pieter Muysken
Radboud University Nijmegen

Marc van Oostendorp
Meertens Institute & Leiden
University

Sali Tagliamonte
University of Toronto

Johan Taeldeman
University of Gent

Øystein Vangsnes
University of Tromsø

Juan Villena Ponsoda
Universidad de Málaga

Volume 10

Swiss German Intonation Patterns

by Adrian Leemann
Swiss German
Intonation Patterns

Adrian Leemann
University of Zurich

John Benjamins Publishing Company
Amsterdam / Philadelphia
Table of contents

Abbreviations used | xiii
SAMPA reference | xv

CHAPTER 1
Introduction | 1

CHAPTER 2
Intonation | 5
2.1 Defining intonation | 7
2.2 Intonation phrase | 10
2.3 Declination and pitch reset | 12
2.4 Stress and accent | 14
 2.4.1 Prominence | 15
 2.4.2 Stress | 17
 2.4.3 Accent | 18
2.5 Pitch range | 19
2.6 Functions of intonation | 19
 2.6.1 Information structuring | 20
 2.6.1.1 Phrase accent and focus | 21
 2.6.1.2 Semantically determined focal accents | 22
 2.6.1.3 Focus effects | 23
 2.6.2 Paralinguistic | 24
 2.6.2.1 Prosodic paragraphing | 24
 2.6.2.2 Conversational | 26
 2.6.3 Non-linguistic functions | 27

CHAPTER 3
Intonation models | 31
3.1 Autosegmental – metrical phonology: ToBI | 32
 3.1.1 Fundamental principles | 32
 3.1.2 Tone and Break Indices (ToBI) | 37
 3.1.3 Shortcomings | 39
3.2 Other intonation models | 40
CHAPTER 4
Command-Response model: Fujisaki

4.1 Origins 41
4.2 Mathematical formulation 42
4.3 Underlying physical and physiological principles 44
4.4 Model parameters: Characteristics and linguistic interpretation 47
 4.4.1 \(Fb \) 47
 4.4.2 Phrase component 49
 4.4.2.1 Linguistic interpretation 50
 4.4.3 Accent component 51
 4.4.3.1 Linguistic interpretation 54
4.5 Earlier applications to German 54
 4.5.1 Möbius 55
 4.5.2 Mixdorff 57
 4.5.3 Shortcomings of the model 60
4.6 Strengths – why the Fujisaki model was chosen for this study 64
 4.6.1 High degree of accuracy of generated f0 contours 65
 4.6.2 Superposition 66
 4.6.3 Selective concatenation with segments 66
 4.6.4 Resynthesis 66
 4.6.5 Replication 66
 4.6.6 Physiological justification 67

CHAPTER 5
Swiss German

5.1 Language use 72
5.2 Existing literature on Swiss German dialects 73
5.3 Previous work on Swiss German intonation 75
 5.3.1 Contributions to Swiss German grammar 75
 5.3.1.1 Bern Swiss German 76
 5.3.1.2 Grisons Swiss German 77
 5.3.1.3 Valais Swiss German 80
 5.3.1.4 Zurich Swiss German 82
 5.3.2 MA Theses 1971–2000 84
 5.3.3 Fitzpatrick’s (1999) “The Alpine Intonation of Bern Swiss German” 89
 5.3.4 Studies on Swiss Standard German 90
 5.3.5 Results from speech synthesis research 95
 5.3.5.1 Pauses 96
 5.3.5.2 Phrasing 96
5.3.5.3 Timing 96
5.3.5.4 Intonation 97
5.3.6 Preliminary summary of previous work on Swiss German intonation 99

CHAPTER 6
Methods 101
6.1 Dialects chosen 101
 6.1.1 Brig - VS 103
 6.1.2 Bern - BE 104
 6.1.3 Chur - GR 104
 6.1.4 Winterthur - ZH 105
6.2 Subjects chosen 105
6.3 Data collection 112
 6.3.1 Recording devices 112
 6.3.2 Interview setting and material 113
 6.3.3 Interview effects 114
6.4 Data preparation 119
 6.4.1 Transcription 119
 6.4.2 Segmentation 121
 6.4.3 Annotation 124
 6.4.3.1 Annotation on the syllabic level 125
 6.4.3.2 Linguistic variables 126
 6.4.3.3 Paralinguistic variables 127
 6.4.3.4 Non-linguistic variables 131

CHAPTER 7
Application of the Fujisaki model 135
7.1 Linguistic interpretation of the model components 135
 7.1.1 Fb 135
 7.1.2 Phrase component 136
 7.1.3 Accent component 137
7.2 Parameter configuration 139
 7.2.1 Fb 140
 7.2.2 Phrase component 140
 7.2.3 Accent component 144
7.3 Modeling 145
 7.3.1 Pre-processing 145
 7.3.2 Modeling procedure 146
 7.3.2.1 Modeling constraints for PCs 148
 7.3.2.2 Modeling constraints for ACs 154
7.3.2.3 LPC-resynthesis 159
7.3.2.4 Concatenation of commands with segments 159

7.4 Modeling difficulties 161
7.4.1 Flat contours 161
7.4.2 Slow-rising phrases 163
7.4.2.1 Slow-rise component 164
7.4.3 Slow-rising local accents 165

CHAPTER 8
Overall results 167
8.1 Statistical preliminaries 167
8.1.1 Data transformation 167
8.1.2 Figure details 169
8.1.3 Presentation of statistics 171
8.2 Summary of analyzed data 171
8.3 F_b 173
8.3.1 Effects with other model parameters 173
8.4 Phrase component 174
8.4.1 PC magnitude 174
8.4.2 PC duration 174
8.4.3 Effects with other model parameters 175
8.5 Accent component 175
8.5.1 AC amplitude 175
8.5.2 AC duration 176
8.5.3 AC timing 176
8.5.4 Effects with other model parameters 177

CHAPTER 9
Linguistic variables 179
9.1 Stress 179
9.1.1 Number of stressed syllables in AC 179
9.1.1.1 AC amplitude 180
9.1.1.2 AC duration 182
9.1.1.3 AC timing 183
9.1.1.4 Summary and discussion 183
9.1.2 Position of first stressed syllable in AC 187
9.1.2.1 AC amplitude 188
9.1.2.2 Summary and discussion 190
9.2 Word class 191
9.2.1 Number of lexical syllables in AC 191
9.2.1.1 AC amplitude 191
9.2.1.2 Summary and discussion 192

CHAPTER 10
Paralinguistic variables 195
10.1 Focus 195
 10.1.1 Accent component 195
 10.1.1.1 AC amplitudes 195
 10.1.1.2 Narrow focus durations 198
 10.1.2 Summary and discussion 199
 10.1.2.1 Accent component 199
10.2 Phrase type 202
 10.2.1 Phrase component 203
 10.2.1.1 PC magnitude 203
 10.2.1.2 PC duration 204
 10.2.2 Accent component 206
 10.2.2.1 AC amplitude 206
 10.2.2.2 AC timing 211
 10.2.3 Summary and discussion 217
 10.2.3.1 Phrase component 217
 10.2.3.2 Accent component 220
10.3 Prosodic paragraphing 226
 10.3.1 PC magnitude 226
 10.3.1.1 Strength of break 226
 10.3.1.2 Duration of previous phrase 227
 10.3.2 PC duration 228
 10.3.2.1 Strength of break 228
 10.3.2.2 Duration of previous phrase 228
 10.3.2.3 Magnitude of previous phrase 229
 10.3.2.4 Summary and discussion 229

CHAPTER 11
Non-linguistic variables 233
11.1 Articulation rate 233
 11.1.1 Phrase component 234
 11.1.1.1 PC duration 234
 11.1.2 Summary and discussion 234
11.2 Emotion 235
 11.2.1 Phrase component 237
 11.2.1.1 PC duration 237
 11.2.1.2 Summary and discussion 238
11.3 Sex 239
 11.3.1 Phrase component 239
 11.3.1.1 PC magnitude 239
 11.3.2 Accent component 242
 11.3.2.1 AC amplitude 242
 11.3.2.2 Summary and discussion 244

CHAPTER 12
Linear models 245
12.1 Preliminaries 245
 12.1.1 Multiple linear regressions 245
 12.1.2 Selection of independent variables 246
 12.1.3 Determining relative importance of explanatory variables 248
 12.1.4 Visualization of statistical models 249
12.2 Phrase component 250
 12.2.1 PC magnitude 250
 12.2.2 PC duration 251
12.3 Accent component 253
 12.3.1 AC amplitude 253
 12.3.1.1 AC duration 256
 12.3.1.2 AC timing 257

CHAPTER 13
Dialect profiles 261
13.1 Bern 262
 13.1.1 Exceptional features 262
 13.1.2 Dialect-internal structure 263
13.2 Grisons 264
 13.2.1 Exceptional features 264
 13.2.2 Dialect-internal structure 265
13.3 Valais 266
 13.3.1 Exceptional features 266
 13.3.2 Dialect-internal structure 267
13.4 Zurich 268
 13.4.1 Exceptional features 268
 13.4.2 Dialect-internal structure 269
13.5 Discussion 270
13.6 Signature features 274
Table of contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>13.6.1</td>
<td>Bern</td>
<td>274</td>
</tr>
<tr>
<td>13.6.2</td>
<td>Grisons</td>
<td>277</td>
</tr>
<tr>
<td>13.6.3</td>
<td>Valais</td>
<td>280</td>
</tr>
<tr>
<td>13.6.4</td>
<td>Zurich</td>
<td>283</td>
</tr>
<tr>
<td>13.7</td>
<td>Alpine-Midland divide</td>
<td>284</td>
</tr>
<tr>
<td>13.7.1</td>
<td>f_0 behavior in variables</td>
<td>284</td>
</tr>
<tr>
<td>13.7.2</td>
<td>Features in the models</td>
<td>285</td>
</tr>
<tr>
<td>13.8</td>
<td>East-West divide</td>
<td>285</td>
</tr>
<tr>
<td>13.8.1</td>
<td>f_0 behavior in variables</td>
<td>285</td>
</tr>
<tr>
<td>13.8.2</td>
<td>Features in the models</td>
<td>286</td>
</tr>
<tr>
<td>13.9</td>
<td>Discussion</td>
<td>286</td>
</tr>
<tr>
<td>13.10</td>
<td>Overall assessment of applying the command-response model</td>
<td>289</td>
</tr>
<tr>
<td></td>
<td>on natural dialectal speech</td>
<td></td>
</tr>
</tbody>
</table>

CHAPTER 14

Conclusion | 293

References | 299

Appendix | 317

Subject and Author index | 329