Swiss German intonation patterns

Leemann, Adrian

Abstract: Switzerland is renowned for having a diverse linguistic and dialectal landscape in a comparatively small and confined space. Possibly, this is one of the reasons why Swiss German dialects have been investigated thoroughly on various linguistic levels. Nevertheless, natural speech intonation has, until today, not been examined systematically. The aim of this study is to analyze natural Swiss German fundamental frequency behavior according to linguistic, paralinguistic, and extralinguistic variables, using statistical tests against the backdrop of detecting dialect-specific patterns as well as cross-dialectal differences. The intonation analyses were conducted with the mathematically-formulated Command-Response model. This is the first large-scale study that applies this framework on a large corpus of natural, dialectal speech. This contribution provides a holistic account of the truly multilayered features of natural speech intonation and brings to light detailed underlying patterns of Swiss German dialectal fundamental frequency behavior. The book is mainly targeted at linguists, speech scientists, as well as dialectologists.
Switzerland is renowned for having a diverse linguistic and dialectal landscape in a comparatively small and confined space. Possibly, this is one of the reasons why Swiss German dialects have been investigated thoroughly on various linguistic levels. Nevertheless, natural speech intonation has, until today, not been examined systematically. The aim of this study is to analyze natural Swiss German fundamental frequency behavior according to linguistic, paralinguistic, and extralinguistic variables, using statistical tests against the backdrop of detecting dialect-specific patterns as well as cross-dialectal differences. The intonation analyses were conducted with the mathematically-formulated Command-Response model. This is the first large-scale study that applies this framework on a large corpus of natural, dialectal speech. This contribution provides a holistic account of the truly multilayered features of natural speech intonation and brings to light detailed underlying patterns of Swiss German dialectal fundamental frequency behavior. The book is mainly targeted at linguists, speech scientists, as well as dialectologists.
Swiss German Intonation Patterns
Studies in Language Variation

The series aims to include empirical studies of linguistic variation as well as its description, explanation and interpretation in structural, social and cognitive terms. The series will cover any relevant subdiscipline: sociolinguistics, contact linguistics, dialectology, historical linguistics, anthropolinguistics/anthropological linguistics. The emphasis will be on linguistic aspects and on the interaction between linguistic and extralinguistic aspects — not on extralinguistic aspects (including language ideology, policy etc.) as such.

For an overview of all books published in this series, please see http://benjamins.com/catalog/silv

Editors

Peter Auer
Universität Freiburg

Frans Hinskens
Meertens Instituut & Vrije Universiteit, Amsterdam

Paul Kerswill
Lancaster University

Editorial Board

Jannis K. Androutsopoulos
University of Hamburg

Arto Anttila
Stanford University

Gaetano Berruto
L’Università di Torino

Paul Boersma
University of Amsterdam

Jenny Cheshire
University of London

Gerard Docherty
Newcastle University

Penny Eckert
Stanford University

William Foley
University of Sydney

Peter Gilles
University of Luxembourg

Barbara Horvath
University of Sydney

Brian Joseph
The Ohio State University

Johannes Kabatek
Eberhard Karls Universität Tübingen

Juha Klemola
University of Tampere

Miklós Kontra
University of Szeged

Bernard Laks
CNRS-Université Paris X Nanterre

Maria-Rosa Lloret
Universitat de Barcelona

K. K. Luke
The University of Hong Kong

Rajend Mesthrie
University of Cape Town

Pieter Muysken
Radboud University Nijmegen

Marc van Oostendorp
Meertens Institute & Leiden University

Sali Tagliamonte
University of Toronto

Johan Taeldeman
University of Gent

Øystein Vangsnes
University of Tromsø

Juan Villena Ponsoda
Universidad de Málaga

Volume 10
Swiss German Intonation Patterns
by Adrian Leemann
Table of contents

Abbreviations used xiii
SAMPA reference xv

CHAPTER 1
Introduction 1

CHAPTER 2
Intonation 5
2.1 Defining intonation 7
2.2 Intonation phrase 10
2.3 Declination and pitch reset 12
2.4 Stress and accent 14
 2.4.1 Prominence 15
 2.4.2 Stress 17
 2.4.3 Accent 18
2.5 Pitch range 19
2.6 Functions of intonation 19
 2.6.1 Information structuring 20
 2.6.1.1 Phrase accent and focus 21
 2.6.1.2 Semantically determined focal accents 22
 2.6.1.3 Focus effects 23
 2.6.2 Paralinguistic 24
 2.6.2.1 Prosodic paragraphing 24
 2.6.2.2 Conversational 26
 2.6.3 Non-linguistic functions 27

CHAPTER 3
Intonation models 31
3.1 Auto-segmental – metrical phonology: ToBI 32
 3.1.1 Fundamental principles 32
 3.1.2 Tone and Break Indices (Tobi) 37
 3.1.3 Shortcomings 39
3.2 Other intonation models 40
CHAPTER 4
Command-Response model: Fujisaki 41
4.1 Origins 41
4.2 Mathematical formulation 42
4.3 Underlying physical and physiological principles 44
4.4 Model parameters: Characteristics and linguistic interpretation 47
 4.4.1 F_b 47
 4.4.2 Phrase component 49
 4.4.2.1 Linguistic interpretation 50
 4.4.3 Accent component 51
 4.4.3.1 Linguistic interpretation 54
4.5 Earlier applications to German 54
 4.5.1 Möbius 55
 4.5.2 Mixdorff 57
 4.5.3 Shortcomings of the model 60
4.6 Strengths – why the Fujisaki model was chosen for this study 64
 4.6.1 High degree of accuracy of generated f0 contours 65
 4.6.2 Superposition 66
 4.6.3 Selective concatenation with segments 66
 4.6.4 Resynthesis 66
 4.6.5 Replication 66
 4.6.6 Physiological justification 67

CHAPTER 5
Swiss German 69
5.1 Language use 72
5.2 Existing literature on Swiss German dialects 73
5.3 Previous work on Swiss German intonation 75
 5.3.1 Contributions to Swiss German grammar 75
 5.3.1.1 Bern Swiss German 76
 5.3.1.2 Grisons Swiss German 77
 5.3.1.3 Valais Swiss German 80
 5.3.1.4 Zurich Swiss German 82
 5.3.2 MA Theses 1971–2000 84
 5.3.3 Fitzpatrick’s (1999) “The Alpine Intonation of Bern Swiss German” 89
 5.3.4 Studies on Swiss Standard German 90
 5.3.5 Results from speech synthesis research 95
 5.3.5.1 Pauses 96
 5.3.5.2 Phrasing 96
5.3.5.3 Timing 96
5.3.5.4 Intonation 97
5.3.6 Preliminary summary of previous work on Swiss German intonation 99

CHAPTER 6
Methods 101
6.1 Dialects chosen 101
 6.1.1 Brig - VS 103
 6.1.2 Bern - BE 104
 6.1.3 Chur - GR 104
 6.1.4 Winterthur - ZH 105
6.2 Subjects chosen 105
6.3 Data collection 112
 6.3.1 Recording devices 112
 6.3.2 Interview setting and material 113
 6.3.3 Interview effects 114
6.4 Data preparation 119
 6.4.1 Transcription 119
 6.4.2 Segmentation 121
 6.4.3 Annotation 124
 6.4.3.1 Annotation on the syllabic level 125
 6.4.3.2 Linguistic variables 126
 6.4.3.3 Paralinguistic variables 127
 6.4.3.4 Non-linguistic variables 131

CHAPTER 7
Application of the Fujisaki model 135
7.1 Linguistic interpretation of the model components 135
 7.1.1 Fb 135
 7.1.2 Phrase component 136
 7.1.3 Accent component 137
7.2 Parameter configuration 139
 7.2.1 Fb 140
 7.2.2 Phrase component 140
 7.2.3 Accent component 144
7.3 Modeling 145
 7.3.1 Pre-processing 145
 7.3.2 Modeling procedure 146
 7.3.2.1 Modeling constraints for PCs 148
 7.3.2.2 Modeling constraints for ACs 154
7.3.2.3 LPC-resynthesis 159
7.3.2.4 Concatenation of commands with segments 159

7.4 Modeling difficulties 161
7.4.1 Flat contours 161
7.4.2 Slow-rising phrases 163
 7.4.2.1 Slow-rise component 164
7.4.3 Slow-rising local accents 165

CHAPTER 8
Overall results 167
8.1 Statistical preliminaries 167
 8.1.1 Data transformation 167
 8.1.2 Figure details 169
 8.1.3 Presentation of statistics 171
8.2 Summary of analyzed data 171
8.3 Fb 173
 8.3.1 Effects with other model parameters 173
8.4 Phrase component 174
 8.4.1 PC magnitude 174
 8.4.2 PC duration 174
 8.4.3 Effects with other model parameters 175
8.5 Accent component 175
 8.5.1 AC amplitude 175
 8.5.2 AC duration 176
 8.5.3 AC timing 176
 8.5.4 Effects with other model parameters 177

CHAPTER 9
Linguistic variables 179
9.1 Stress 179
 9.1.1 Number of stressed syllables in AC 179
 9.1.1.1 AC amplitude 180
 9.1.1.2 AC duration 182
 9.1.1.3 AC timing 183
 9.1.1.4 Summary and discussion 183
 9.1.2 Position of first stressed syllable in AC 187
 9.1.2.1 AC amplitude 188
 9.1.2.2 Summary and discussion 190
9.2 Word class 191
 9.2.1 Number of lexical syllables in AC 191
 9.2.1.1 AC amplitude 191
<table>
<thead>
<tr>
<th>Chapter</th>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.2.1.2</td>
<td>Summary and discussion</td>
<td>192</td>
<td></td>
</tr>
<tr>
<td>Chapter 10</td>
<td></td>
<td>Paralinguistic variables</td>
<td></td>
</tr>
<tr>
<td>10.1</td>
<td>Focus</td>
<td>195</td>
<td></td>
</tr>
<tr>
<td>10.1.1</td>
<td>Accent component</td>
<td>195</td>
<td></td>
</tr>
<tr>
<td>10.1.1.1</td>
<td>AC amplitudes</td>
<td>195</td>
<td></td>
</tr>
<tr>
<td>10.1.1.2</td>
<td>Narrow focus durations</td>
<td>198</td>
<td></td>
</tr>
<tr>
<td>10.1.2</td>
<td>Summary and discussion</td>
<td>199</td>
<td></td>
</tr>
<tr>
<td>10.1.2.1</td>
<td>Accent component</td>
<td>199</td>
<td></td>
</tr>
<tr>
<td>10.2</td>
<td>Phrase type</td>
<td>202</td>
<td></td>
</tr>
<tr>
<td>10.2.1</td>
<td>Phrase component</td>
<td>203</td>
<td></td>
</tr>
<tr>
<td>10.2.1.1</td>
<td>PC magnitude</td>
<td>203</td>
<td></td>
</tr>
<tr>
<td>10.2.1.2</td>
<td>PC duration</td>
<td>204</td>
<td></td>
</tr>
<tr>
<td>10.2.2</td>
<td>Accent component</td>
<td>206</td>
<td></td>
</tr>
<tr>
<td>10.2.2.1</td>
<td>AC amplitude</td>
<td>206</td>
<td></td>
</tr>
<tr>
<td>10.2.2.2</td>
<td>AC timing</td>
<td>211</td>
<td></td>
</tr>
<tr>
<td>10.2.3</td>
<td>Summary and discussion</td>
<td>217</td>
<td></td>
</tr>
<tr>
<td>10.2.3.1</td>
<td>Phrase component</td>
<td>217</td>
<td></td>
</tr>
<tr>
<td>10.2.3.2</td>
<td>Accent component</td>
<td>220</td>
<td></td>
</tr>
<tr>
<td>10.3</td>
<td>Prosodic paragraphing</td>
<td>226</td>
<td></td>
</tr>
<tr>
<td>10.3.1</td>
<td>PC magnitude</td>
<td>226</td>
<td></td>
</tr>
<tr>
<td>10.3.1.1</td>
<td>Strength of break</td>
<td>226</td>
<td></td>
</tr>
<tr>
<td>10.3.1.2</td>
<td>Duration of previous phrase</td>
<td>227</td>
<td></td>
</tr>
<tr>
<td>10.3.1.3</td>
<td>Magnitude of previous phrase</td>
<td>227</td>
<td></td>
</tr>
<tr>
<td>10.3.2</td>
<td>PC duration</td>
<td>228</td>
<td></td>
</tr>
<tr>
<td>10.3.2.1</td>
<td>Strength of break</td>
<td>228</td>
<td></td>
</tr>
<tr>
<td>10.3.2.2</td>
<td>Duration of previous phrase</td>
<td>228</td>
<td></td>
</tr>
<tr>
<td>10.3.2.3</td>
<td>Magnitude of previous phrase</td>
<td>229</td>
<td></td>
</tr>
<tr>
<td>10.3.2.4</td>
<td>Summary and discussion</td>
<td>229</td>
<td></td>
</tr>
<tr>
<td>Chapter 11</td>
<td></td>
<td>Non-linguistic variables</td>
<td></td>
</tr>
<tr>
<td>11.1</td>
<td>Articulation rate</td>
<td>233</td>
<td></td>
</tr>
<tr>
<td>11.1.1</td>
<td>Phrase component</td>
<td>234</td>
<td></td>
</tr>
<tr>
<td>11.1.1.1</td>
<td>PC duration</td>
<td>234</td>
<td></td>
</tr>
<tr>
<td>11.1.1.2</td>
<td>Summary and discussion</td>
<td>234</td>
<td></td>
</tr>
<tr>
<td>11.2</td>
<td>Emotion</td>
<td>235</td>
<td></td>
</tr>
<tr>
<td>11.2.1</td>
<td>Phrase component</td>
<td>237</td>
<td></td>
</tr>
<tr>
<td>11.2.1.1</td>
<td>PC duration</td>
<td>237</td>
<td></td>
</tr>
<tr>
<td>11.2.1.2</td>
<td>Summary and discussion</td>
<td>238</td>
<td></td>
</tr>
</tbody>
</table>
11.3 Sex 239
 11.3.1 Phrase component 239
 11.3.1.1 PC magnitude 239
 11.3.2 Accent component 242
 11.3.2.1 AC amplitude 242
 11.3.2.2 Summary and discussion 244

CHAPTER 12
 Linear models 245
 12.1 Preliminaries 245
 12.1.1 Multiple linear regressions 245
 12.1.2 Selection of independent variables 246
 12.1.3 Determining relative importance of explanatory variables 248
 12.1.4 Visualization of statistical models 249
 12.2 Phrase component 250
 12.2.1 PC magnitude 250
 12.2.2 PC duration 251
 12.3 Accent component 253
 12.3.1 AC amplitude 253
 12.3.1.1 AC duration 256
 12.3.1.2 AC timing 257

CHAPTER 13
 Dialect profiles 261
 13.1 Bern 262
 13.1.1 Exceptional features 262
 13.1.2 Dialect-internal structure 263
 13.2 Grisons 264
 13.2.1 Exceptional features 264
 13.2.2 Dialect-internal structure 265
 13.3 Valais 266
 13.3.1 Exceptional features 266
 13.3.2 Dialect-internal structure 267
 13.4 Zurich 268
 13.4.1 Exceptional features 268
 13.4.2 Dialect-internal structure 269
 13.5 Discussion 270
 13.6 Signature features 274
13.6.1 Bern 274
13.6.2 Grisons 277
13.6.3 Valais 280
13.6.4 Zurich 283
13.7 Alpine-Midland divide 284
 13.7.1 \(f^0 \) behavior in variables 284
 13.7.2 Features in the models 285
13.8 East-West divide 285
 13.8.1 \(f^0 \) behavior in variables 285
 13.8.2 Features in the models 286
13.9 Discussion 286
13.10 Overall assessment of applying the command-response model on natural dialectal speech 290

CHAPTER 14
Conclusion 293
References 299
Appendix 317
Subject and Author index 329