Header

UZH-Logo

Maintenance Infos

Pathway-specific plasticity in the human spinal cord


Leukel, Christian; Taube, Wolfgang; Beck, Sandra; Schubert, Martin (2012). Pathway-specific plasticity in the human spinal cord. European Journal of Neuroscience, 35(10):1622-1629.

Abstract

The aim of the present study was to artificially induce plasticity in the human spinal cord and evaluate whether this plasticity is pathway specific. For this purpose, a technique called paired associative stimulation (PAS) was applied. Volleys evoked by transcranial magnetic stimulation over the primary motor cortex and peripheral nerve stimulation of the nervus tibialis in the popliteal fossa were timed to coincide at the spinal level. The transmission of different corticospinal projections was assessed before and after PAS using conditioned H-reflexes. Different groups of healthy volunteers (28 ± 5 years) were tested; intervention groups 1 (n = 9) and 2 (n = 8) received spinal PAS (360 paired stimuli) and the induced effects were evaluated using cortical (group 1) or cervicomedullary (group 2) conditioning of musculus soleus H-reflexes. After spinal PAS, the conditioned H-reflexes were significantly facilitated when tested with cortical and cervicomedullary stimulation. The effect of the latter technique is independent of changes in the excitability of cortical neurons. Therefore, the finding that conditioned H-reflexes were increased after spinal PAS when tested with both cortical and cervicomedullary stimulation suggests that neural plasticity was induced within the spinal cord. The facilitation could only be observed for specific inter-stimulus intervals between volleys induced by peripheral nerve stimulation and transcranial magnetic stimulation. As the specific inter-stimulus intervals were assumed to relate to transmission within specific motor pathways, it is argued that changes in the corticospinal transmission were pathway-specific. These findings may be helpful in inducing and assessing neural plasticity in pathological conditions like spinal cord injuries.

Abstract

The aim of the present study was to artificially induce plasticity in the human spinal cord and evaluate whether this plasticity is pathway specific. For this purpose, a technique called paired associative stimulation (PAS) was applied. Volleys evoked by transcranial magnetic stimulation over the primary motor cortex and peripheral nerve stimulation of the nervus tibialis in the popliteal fossa were timed to coincide at the spinal level. The transmission of different corticospinal projections was assessed before and after PAS using conditioned H-reflexes. Different groups of healthy volunteers (28 ± 5 years) were tested; intervention groups 1 (n = 9) and 2 (n = 8) received spinal PAS (360 paired stimuli) and the induced effects were evaluated using cortical (group 1) or cervicomedullary (group 2) conditioning of musculus soleus H-reflexes. After spinal PAS, the conditioned H-reflexes were significantly facilitated when tested with cortical and cervicomedullary stimulation. The effect of the latter technique is independent of changes in the excitability of cortical neurons. Therefore, the finding that conditioned H-reflexes were increased after spinal PAS when tested with both cortical and cervicomedullary stimulation suggests that neural plasticity was induced within the spinal cord. The facilitation could only be observed for specific inter-stimulus intervals between volleys induced by peripheral nerve stimulation and transcranial magnetic stimulation. As the specific inter-stimulus intervals were assumed to relate to transmission within specific motor pathways, it is argued that changes in the corticospinal transmission were pathway-specific. These findings may be helpful in inducing and assessing neural plasticity in pathological conditions like spinal cord injuries.

Statistics

Citations

13 citations in Web of Science®
13 citations in Scopus®
Google Scholar™

Altmetrics

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:04 Faculty of Medicine > Balgrist University Hospital, Swiss Spinal Cord Injury Center
Dewey Decimal Classification:610 Medicine & health
Language:English
Date:12 May 2012
Deposited On:21 Feb 2013 08:32
Last Modified:05 Apr 2016 16:31
Publisher:Wiley-Blackwell
ISSN:0953-816X
Publisher DOI:https://doi.org/10.1111/j.1460-9568.2012.08067.x
PubMed ID:22487124

Download

Full text not available from this repository.
View at publisher

TrendTerms

TrendTerms displays relevant terms of the abstract of this publication and related documents on a map. The terms and their relations were extracted from ZORA using word statistics. Their timelines are taken from ZORA as well. The bubble size of a term is proportional to the number of documents where the term occurs. Red, orange, yellow and green colors are used for terms that occur in the current document; red indicates high interlinkedness of a term with other terms, orange, yellow and green decreasing interlinkedness. Blue is used for terms that have a relation with the terms in this document, but occur in other documents.
You can navigate and zoom the map. Mouse-hovering a term displays its timeline, clicking it yields the associated documents.

Author Collaborations