Header

UZH-Logo

Maintenance Infos

Reproducibility and sensitivity of detecting brain activity by simultaneous electroencephalography and near-infrared spectroscopy


Biallas, Martin; Trajkovic, Ivo; Haensse, Daniel; Marcar, Valentine; Wolf, Martin (2012). Reproducibility and sensitivity of detecting brain activity by simultaneous electroencephalography and near-infrared spectroscopy. Experimental Brain Research, 222(3):255-264.

Abstract

The aims were (1) to determine the sensitivity and reproducibility to detect the hemodynamic responses and optical neuronal signals to brain stimulation by near-infrared spectroscopy (NIRS) and evoked potentials by electroencephalography (EEG) and (2) to test the effect of novel filters on the signal-to-noise ratio. This was achieved by simultaneous NIRS and EEG measurements in 15 healthy adults during visual stimulation. Each subject was measured three times on three different days. The sensitivity of NIRS to detect hemodynamic responses was 55.2 % with novel filtering and 40 % without. The reproducibility in single subjects was low. For the EEG, the sensitivity was 86.4 % and the reproducibility 57.1 %. An optical neuronal signal was not detected, although novel filtering considerably reduced noise.

Abstract

The aims were (1) to determine the sensitivity and reproducibility to detect the hemodynamic responses and optical neuronal signals to brain stimulation by near-infrared spectroscopy (NIRS) and evoked potentials by electroencephalography (EEG) and (2) to test the effect of novel filters on the signal-to-noise ratio. This was achieved by simultaneous NIRS and EEG measurements in 15 healthy adults during visual stimulation. Each subject was measured three times on three different days. The sensitivity of NIRS to detect hemodynamic responses was 55.2 % with novel filtering and 40 % without. The reproducibility in single subjects was low. For the EEG, the sensitivity was 86.4 % and the reproducibility 57.1 %. An optical neuronal signal was not detected, although novel filtering considerably reduced noise.

Statistics

Citations

12 citations in Web of Science®
13 citations in Scopus®
Google Scholar™

Altmetrics

Downloads

2 downloads since deposited on 21 Feb 2013
0 downloads since 12 months
Detailed statistics

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:04 Faculty of Medicine > University Hospital Zurich > Clinic for Neonatology
Dewey Decimal Classification:610 Medicine & health
Language:English
Date:2012
Deposited On:21 Feb 2013 09:42
Last Modified:07 Dec 2017 19:48
Publisher:Springer
ISSN:0014-4819
Publisher DOI:https://doi.org/10.1007/s00221-012-3213-6
PubMed ID:22923223

Download