Header

UZH-Logo

Maintenance Infos

Detection of cerebral autoregulation by near-infrared spectroscopy in neonates: performance analysis of measurement methods


Caicedo, Alexander; Naulaers, Gunnar; Lemmers, Petra; van Bel, Frank; Wolf, Martin; Van Huffel, Sabine (2012). Detection of cerebral autoregulation by near-infrared spectroscopy in neonates: performance analysis of measurement methods. Journal of Biomedical Optics, 17(11):117003.

Abstract

Cerebral Autoregulation, in clinical practice, is assessed by means of correlation or coherence analysis between mean arterial blood pressure (MABP) and cerebral blood flow (CBF). However, even though there is evidence linking cerebral autoregulation assessment with clinical outcome in preterm infants, available methods lack precision for clinical use. Classical methods, used for cerebral autoregulation, are influenced by the choice of parameters such as the length of the epoch under analysis and the choice of suitable frequency bands. The influence of these parameters, in the derived measurements for cerebral autoregulation, has not yet been evaluated. In this study, cerebral autoregulation was assessed using correlation, coherence, a modified version of coherence and transfer function gain, and phase. The influence of the extra-parameters on the final scores was evaluated by means of sensitivity analysis. The methods were applied to a database of 18 neonates with measurements of MABP and tissue oxygenation index (TOI). TOI reflects changes in CBF and was measured by means of near-infrared spectroscopy.

Abstract

Cerebral Autoregulation, in clinical practice, is assessed by means of correlation or coherence analysis between mean arterial blood pressure (MABP) and cerebral blood flow (CBF). However, even though there is evidence linking cerebral autoregulation assessment with clinical outcome in preterm infants, available methods lack precision for clinical use. Classical methods, used for cerebral autoregulation, are influenced by the choice of parameters such as the length of the epoch under analysis and the choice of suitable frequency bands. The influence of these parameters, in the derived measurements for cerebral autoregulation, has not yet been evaluated. In this study, cerebral autoregulation was assessed using correlation, coherence, a modified version of coherence and transfer function gain, and phase. The influence of the extra-parameters on the final scores was evaluated by means of sensitivity analysis. The methods were applied to a database of 18 neonates with measurements of MABP and tissue oxygenation index (TOI). TOI reflects changes in CBF and was measured by means of near-infrared spectroscopy.

Statistics

Citations

7 citations in Web of Science®
9 citations in Scopus®
Google Scholar™

Altmetrics

Downloads

97 downloads since deposited on 21 Feb 2013
22 downloads since 12 months
Detailed statistics

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:04 Faculty of Medicine > University Hospital Zurich > Clinic for Neonatology
Dewey Decimal Classification:610 Medicine & health
Language:English
Date:2012
Deposited On:21 Feb 2013 09:57
Last Modified:05 Apr 2016 16:32
Publisher:SPIE - International Society for Optical Engineering
ISSN:1083-3668
Additional Information:Copyright 2012 Society of Photo-Optical Instrumentation Engineers. This paper was published in Journal of Biomedical Optics and is made available as an electronic reprint with permission of SPIE. One print or electronic copy may be made for personal use only. Systematic or multiple reproduction, distribution to multiple locations via electronic or other means, duplication of any material in this paper for a fee or for commercial purposes, or modification of the content of the paper are prohibited.
Publisher DOI:https://doi.org/10.1117/1.JBO.17.11.117003
PubMed ID:23117814

Download

Preview Icon on Download
Preview
Content: Published Version
Filetype: PDF
Size: 1MB
View at publisher

TrendTerms

TrendTerms displays relevant terms of the abstract of this publication and related documents on a map. The terms and their relations were extracted from ZORA using word statistics. Their timelines are taken from ZORA as well. The bubble size of a term is proportional to the number of documents where the term occurs. Red, orange, yellow and green colors are used for terms that occur in the current document; red indicates high interlinkedness of a term with other terms, orange, yellow and green decreasing interlinkedness. Blue is used for terms that have a relation with the terms in this document, but occur in other documents.
You can navigate and zoom the map. Mouse-hovering a term displays its timeline, clicking it yields the associated documents.

Author Collaborations