Header

UZH-Logo

Maintenance Infos

7-Hydroxymethyl chlorophyll a reductase functions in metabolic channeling of chlorophyll breakdown intermediates during leaf senescence


Sakuraba, Yasuhito; Kim, Ye-Sol; Yoo, Soo-Cheul; Hörtensteiner, Stefan; Paek, Nam-Chon (2013). 7-Hydroxymethyl chlorophyll a reductase functions in metabolic channeling of chlorophyll breakdown intermediates during leaf senescence. Biochemical and Biophysical Research Communications, 430(1):32-37.

Abstract

During natural or dark-induced senescence, chlorophyll degradation causes leaf yellowing. Recent evidence indicates that chlorophyll catabolic enzymes (CCEs) interact with the photosynthetic apparatus; for example, five CCEs (NYC1, NOL, PPH, PAO and RCCR) interact with LHCII. STAY-GREEN (SGR) and CCEs interact with one another in senescing chloroplasts; this interaction may allow metabolic channeling of potentially phototoxic chlorophyll breakdown intermediates. 7-Hydroxymethyl chlorophyll a reductase (HCAR) also acts as a CCE, but HCAR functions during leaf senescence remain unclear. Here we show that in Arabidopsis, HCAR-overexpressing plants exhibited accelerated leaf yellowing and, conversely, hcar mutants stayed green during dark-induced senescence. Moreover, HCAR interacted with LHCII in in vivo pull-down assays, and with SGR, NYC1, NOL and RCCR in yeast two-hybrid assays, indicating that HCAR is a component of the proposed SGR-CCE-LHCII complex, which acts in chlorophyll breakdown. Notably, HCAR and NOL are expressed throughout leaf development and are drastically down-regulated during dark-induced senescence, in contrast with SGR, NYC1, PPH and PAO, which are up-regulated during dark-induced senescence. Moreover, HCAR and NOL are highly up-regulated during greening of etiolated seedlings, strongly suggesting a major role for NOL and HCAR in the chlorophyll cycle during vegetative stages, possibly in chlorophyll turnover.

Abstract

During natural or dark-induced senescence, chlorophyll degradation causes leaf yellowing. Recent evidence indicates that chlorophyll catabolic enzymes (CCEs) interact with the photosynthetic apparatus; for example, five CCEs (NYC1, NOL, PPH, PAO and RCCR) interact with LHCII. STAY-GREEN (SGR) and CCEs interact with one another in senescing chloroplasts; this interaction may allow metabolic channeling of potentially phototoxic chlorophyll breakdown intermediates. 7-Hydroxymethyl chlorophyll a reductase (HCAR) also acts as a CCE, but HCAR functions during leaf senescence remain unclear. Here we show that in Arabidopsis, HCAR-overexpressing plants exhibited accelerated leaf yellowing and, conversely, hcar mutants stayed green during dark-induced senescence. Moreover, HCAR interacted with LHCII in in vivo pull-down assays, and with SGR, NYC1, NOL and RCCR in yeast two-hybrid assays, indicating that HCAR is a component of the proposed SGR-CCE-LHCII complex, which acts in chlorophyll breakdown. Notably, HCAR and NOL are expressed throughout leaf development and are drastically down-regulated during dark-induced senescence, in contrast with SGR, NYC1, PPH and PAO, which are up-regulated during dark-induced senescence. Moreover, HCAR and NOL are highly up-regulated during greening of etiolated seedlings, strongly suggesting a major role for NOL and HCAR in the chlorophyll cycle during vegetative stages, possibly in chlorophyll turnover.

Statistics

Citations

24 citations in Web of Science®
26 citations in Scopus®
Google Scholar™

Altmetrics

Downloads

106 downloads since deposited on 25 Mar 2013
31 downloads since 12 months
Detailed statistics

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:07 Faculty of Science > Department of Plant and Microbial Biology
Dewey Decimal Classification:580 Plants (Botany)
Language:English
Date:2013
Deposited On:25 Mar 2013 13:23
Last Modified:07 Dec 2017 19:56
Publisher:Elsevier
ISSN:0006-291X
Publisher DOI:https://doi.org/10.1016/j.bbrc.2012.11.050
PubMed ID:23200839

Download