Header

UZH-Logo

Maintenance Infos

Characterization and turnover of CD73/IP(3)R3-positive microvillar cells in the adult mouse olfactory epithelium - Zurich Open Repository and Archive


Pfister, Sandra; Dietrich, Maren G; Sidler, Corinne; Fritschy, Jean-Marc; Knuesel, Irene; Elsaesser, Rebecca (2012). Characterization and turnover of CD73/IP(3)R3-positive microvillar cells in the adult mouse olfactory epithelium. Chemical Senses, 37(9):859-868.

Abstract

The main olfactory epithelium consists of 4 major cell types: sensory neurons, supporting cells, microvillar cells, and basal progenitor cells. Several populations of microvillar olfactory cells have been described, whose properties are not yet fully understood. In this study, we aimed to clarify the classification of microvillar cells by introducing a specific marker, CD73. Furthermore, we investigated the turnover of CD73-microvillar cells during adult life. Using direct and indirect immunofluorescence in adult main olfactory epithelium, we first demonstrate that ecto-5'-nucleotidase (CD73) is a reliable marker for microvillar cells reported previously to express phospholipase C β2 (PLC β2) along with type 3 IP(3) receptors (IP(3)R3) and transient receptor potential channels 6 (TRPC6), as well as for cells labeled by transgenic expression of tauGFP driven by the IP(3)R3 promoter. The ubiquitous CD73 immunoreactivity in the microvilli of these 2 cell populations indicates that they correspond to the same cell type (CD73-microvillar cell), endowed with a signal transduction cascade mobilizing Ca(++) from intracellular stores. These microvillar cells respond to odors, possess a basal process, and do not degenerate after bulbectomy, suggesting that they contribute to cellular homeostasis in the olfactory epithelium. Next, we examined whether CD73-microvillar cells undergo turnover in the adult olfactory epithelium. By combining CD73 immunofluorescence and BrdU pulse labeling, we show delayed BrdU incorporation in a small fraction of CD73-positive microvillar cells, which persists for several weeks after BrdU administration. These findings indicate that CD73-microvillar cells likely differentiate from proliferating progenitor cells and have a slow turnover despite their apical position in the olfactory epithelium. These combined properties are unique among olfactory cells, in line with the possibility that they might regulate cellular homeostasis driven by extracellular ATP and adenosine.

Abstract

The main olfactory epithelium consists of 4 major cell types: sensory neurons, supporting cells, microvillar cells, and basal progenitor cells. Several populations of microvillar olfactory cells have been described, whose properties are not yet fully understood. In this study, we aimed to clarify the classification of microvillar cells by introducing a specific marker, CD73. Furthermore, we investigated the turnover of CD73-microvillar cells during adult life. Using direct and indirect immunofluorescence in adult main olfactory epithelium, we first demonstrate that ecto-5'-nucleotidase (CD73) is a reliable marker for microvillar cells reported previously to express phospholipase C β2 (PLC β2) along with type 3 IP(3) receptors (IP(3)R3) and transient receptor potential channels 6 (TRPC6), as well as for cells labeled by transgenic expression of tauGFP driven by the IP(3)R3 promoter. The ubiquitous CD73 immunoreactivity in the microvilli of these 2 cell populations indicates that they correspond to the same cell type (CD73-microvillar cell), endowed with a signal transduction cascade mobilizing Ca(++) from intracellular stores. These microvillar cells respond to odors, possess a basal process, and do not degenerate after bulbectomy, suggesting that they contribute to cellular homeostasis in the olfactory epithelium. Next, we examined whether CD73-microvillar cells undergo turnover in the adult olfactory epithelium. By combining CD73 immunofluorescence and BrdU pulse labeling, we show delayed BrdU incorporation in a small fraction of CD73-positive microvillar cells, which persists for several weeks after BrdU administration. These findings indicate that CD73-microvillar cells likely differentiate from proliferating progenitor cells and have a slow turnover despite their apical position in the olfactory epithelium. These combined properties are unique among olfactory cells, in line with the possibility that they might regulate cellular homeostasis driven by extracellular ATP and adenosine.

Citations

9 citations in Web of Science®
8 citations in Scopus®
Google Scholar™

Altmetrics

Downloads

80 downloads since deposited on 25 Feb 2013
23 downloads since 12 months
Detailed statistics

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:04 Faculty of Medicine > Institute of Pharmacology and Toxicology
07 Faculty of Science > Institute of Pharmacology and Toxicology
Dewey Decimal Classification:570 Life sciences; biology
610 Medicine & health
Language:English
Date:September 2012
Deposited On:25 Feb 2013 14:26
Last Modified:05 Apr 2016 16:32
Publisher:Oxford University Press
ISSN:0379-864X
Additional Information:This is a pre-copy-editing, author-produced PDF of an article accepted for publication in Chemical Senses following peer review. The definitive publisher-authenticated version Pfister, Sandra; Dietrich, Maren G; Sidler, Corinne; Fritschy, Jean-Marc; Knuesel, Irene; Elsaesser, Rebecca (2012). Characterization and turnover of CD73/IP(3)R3-positive microvillar cells in the adult mouse olfactory epithelium. Chemical Senses, 37(9):859-868 is available online at: http://chemse.oxfordjournals.org/content/37/9/859
Publisher DOI:https://doi.org/10.1093/chemse/bjs069
PubMed ID:22952298

Download

Preview Icon on Download
Preview
Content: Accepted Version
Filetype: PDF
Size: 617kB
View at publisher

TrendTerms

TrendTerms displays relevant terms of the abstract of this publication and related documents on a map. The terms and their relations were extracted from ZORA using word statistics. Their timelines are taken from ZORA as well. The bubble size of a term is proportional to the number of documents where the term occurs. Red, orange, yellow and green colors are used for terms that occur in the current document; red indicates high interlinkedness of a term with other terms, orange, yellow and green decreasing interlinkedness. Blue is used for terms that have a relation with the terms in this document, but occur in other documents.
You can navigate and zoom the map. Mouse-hovering a term displays its timeline, clicking it yields the associated documents.

Author Collaborations