Header

UZH-Logo

Maintenance Infos

Dissipation of sleep pressure is stable across adolescence


Tarokh, L; Carskadon, M A; Achermann, P (2012). Dissipation of sleep pressure is stable across adolescence. Neuroscience, 216:167-177.

Abstract

The sleep electroencephalogram (EEG) undergoes many changes during adolescence. We assessed whether sleep homeostasis is altered across adolescent development using two measures: the dissipation of slow-wave activity (SWA, 0.6-4.6Hz) across the night and the rate of build-up of SWA in the first non-rapid eye movement (NREM) sleep episode. Furthermore, we examined the association between homeostatic and circadian measures, by correlating the build-up of SWA in the first non-rapid eye movement (NREM) sleep episode with circadian phase. Finally, we compared the dissipation of SWA in individuals with (PH+) and without (PH-) a parental history of alcohol abuse/dependence. Twenty children (8 PH+) and 25 teens (10 PH+) underwent two consecutive polysomnographic recordings at ages 9/10 and 15/16 years and again 1.5-3 years later. Thirteen young adults (ages 20-23 years; no PH+) were assessed one time. The decay of Process S was modeled for each individual at each assessment using data from both recordings. Four parameters of Process S were derived for EEG derivation C3/A2: time constant of the decay, lower asymptote (LA), the level of S at sleep onset (S(SO)), and S(SO) minus LA. We found no change in these parameters between assessments for the children and teen cohorts. Between-subject analysis of the follow-up assessment for children (ages 11-13 years) and the initial assessment for teens (ages 15/16 years) showed no difference in these parameters, nor did follow-up assessment of teens (ages 17-19 years) compared to the single assessment of young adults (ages 20-23 years). Similarly, we observed no developmental changes in the rate of the build-up of SWA in the first NREM sleep episode for our within- and between-subject analyses, or a correlation between this measure and circadian phase for either cohort. With regard to parental alcohol history, we found no difference in the dissipation of sleep pressure between PH+ and PH- children and teens. These results indicate that the dissipation of sleep pressure does not change across adolescent development, is not correlated with circadian phase, and does not differ between PH+ and PH- children and teens.

Abstract

The sleep electroencephalogram (EEG) undergoes many changes during adolescence. We assessed whether sleep homeostasis is altered across adolescent development using two measures: the dissipation of slow-wave activity (SWA, 0.6-4.6Hz) across the night and the rate of build-up of SWA in the first non-rapid eye movement (NREM) sleep episode. Furthermore, we examined the association between homeostatic and circadian measures, by correlating the build-up of SWA in the first non-rapid eye movement (NREM) sleep episode with circadian phase. Finally, we compared the dissipation of SWA in individuals with (PH+) and without (PH-) a parental history of alcohol abuse/dependence. Twenty children (8 PH+) and 25 teens (10 PH+) underwent two consecutive polysomnographic recordings at ages 9/10 and 15/16 years and again 1.5-3 years later. Thirteen young adults (ages 20-23 years; no PH+) were assessed one time. The decay of Process S was modeled for each individual at each assessment using data from both recordings. Four parameters of Process S were derived for EEG derivation C3/A2: time constant of the decay, lower asymptote (LA), the level of S at sleep onset (S(SO)), and S(SO) minus LA. We found no change in these parameters between assessments for the children and teen cohorts. Between-subject analysis of the follow-up assessment for children (ages 11-13 years) and the initial assessment for teens (ages 15/16 years) showed no difference in these parameters, nor did follow-up assessment of teens (ages 17-19 years) compared to the single assessment of young adults (ages 20-23 years). Similarly, we observed no developmental changes in the rate of the build-up of SWA in the first NREM sleep episode for our within- and between-subject analyses, or a correlation between this measure and circadian phase for either cohort. With regard to parental alcohol history, we found no difference in the dissipation of sleep pressure between PH+ and PH- children and teens. These results indicate that the dissipation of sleep pressure does not change across adolescent development, is not correlated with circadian phase, and does not differ between PH+ and PH- children and teens.

Statistics

Citations

Dimensions.ai Metrics
14 citations in Web of Science®
18 citations in Scopus®
17 citations in Microsoft Academic
Google Scholar™

Altmetrics

Downloads

2 downloads since deposited on 28 Feb 2013
0 downloads since 12 months
Detailed statistics

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:04 Faculty of Medicine > Institute of Pharmacology and Toxicology
07 Faculty of Science > Institute of Pharmacology and Toxicology
Dewey Decimal Classification:570 Life sciences; biology
610 Medicine & health
Language:English
Date:2012
Deposited On:28 Feb 2013 12:09
Last Modified:18 Feb 2018 01:27
Publisher:Elsevier
ISSN:0306-4522
OA Status:Closed
Publisher DOI:https://doi.org/10.1016/j.neuroscience.2012.04.055
PubMed ID:22554778

Download

Filetype: Other (Coversheet Pages conversion from application/pdf to application/pdf) - Registered users only