Header

UZH-Logo

Maintenance Infos

Exposure system to study hypotheses of ELF and RF electromagnetic field interactions of mobile phones with the central nervous system


Murbach, Manuel; Christopoulou, Maria; Crespo-Valero, Pedro; Achermann, Peter; Kuster, Niels (2012). Exposure system to study hypotheses of ELF and RF electromagnetic field interactions of mobile phones with the central nervous system. Bioelectromagnetics, 33(6):527-533.

Abstract

A novel exposure system for double-blind human electromagnetic provocation studies has been developed that satisfies the precision, control of fields and potential artifacts, and provides the flexibility to investigate the response of hypotheses-driven electromagnetic field exposure schemes on brain function, ranging from extremely low frequency (ELF) to radio frequency (RF) fields. The system can provide the same exposure of the lateral cerebral cortex at two different RF frequencies (900 and 2140 MHz) but with different exposure levels at subcortical structures, and also allows uniform ELF magnetic field exposure of the brain. The RF modulation and ELF signal are obtained by a freely programmable arbitrary signal generator allowing a wide range of worst-case exposure scenarios to be simulated, including those caused by wireless devices. The maximum achievable RF exposure is larger than 60 W/kg peak spatial specific absorption rate averaged over 10 g of tissue. The maximum ELF magnetic field exposure of the brain is 800 A/m at 50 Hz with a deviation from uniformity of 8% (SD).

Abstract

A novel exposure system for double-blind human electromagnetic provocation studies has been developed that satisfies the precision, control of fields and potential artifacts, and provides the flexibility to investigate the response of hypotheses-driven electromagnetic field exposure schemes on brain function, ranging from extremely low frequency (ELF) to radio frequency (RF) fields. The system can provide the same exposure of the lateral cerebral cortex at two different RF frequencies (900 and 2140 MHz) but with different exposure levels at subcortical structures, and also allows uniform ELF magnetic field exposure of the brain. The RF modulation and ELF signal are obtained by a freely programmable arbitrary signal generator allowing a wide range of worst-case exposure scenarios to be simulated, including those caused by wireless devices. The maximum achievable RF exposure is larger than 60 W/kg peak spatial specific absorption rate averaged over 10 g of tissue. The maximum ELF magnetic field exposure of the brain is 800 A/m at 50 Hz with a deviation from uniformity of 8% (SD).

Statistics

Citations

8 citations in Web of Science®
8 citations in Scopus®
Google Scholar™

Altmetrics

Downloads

0 downloads since deposited on 28 Feb 2013
0 downloads since 12 months

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:04 Faculty of Medicine > Institute of Pharmacology and Toxicology
07 Faculty of Science > Institute of Pharmacology and Toxicology

04 Faculty of Medicine > Institute of Biomedical Engineering
Dewey Decimal Classification:570 Life sciences; biology
170 Ethics
610 Medicine & health
Language:English
Date:2012
Deposited On:28 Feb 2013 12:10
Last Modified:05 Apr 2016 16:34
Publisher:Wiley-Blackwell
ISSN:0197-8462
Publisher DOI:https://doi.org/10.1002/bem.21710
PubMed ID:22331550

Download

Preview Icon on Download
Content: Published Version
Filetype: PDF - Registered users only
Size: 7MB
View at publisher