Cell growth processes in arabidopsis thaliana are modified by flavonols

Ringli, Christoph; Kuhn, Benjamin M; Bigler, Laurent

DOI: https://doi.org/10.2533/chimia.2012.714

Posted at the Zurich Open Repository and Archive, University of Zurich
ZORA URL: https://doi.org/10.5167/uzh-74679
Published Version

Originally published at:
Ringli, Christoph; Kuhn, Benjamin M; Bigler, Laurent (2012). Cell growth processes in arabidopsis thaliana are modified by flavonols. CHIMIA International Journal for Chemistry, 66(9):714.
DOI: https://doi.org/10.2533/chimia.2012.714
Highlights of Analytical Chemistry in Switzerland

Division of Analytical Chemistry
A Division of the Swiss Chemical Society

Cell Growth Processes in Arabidopsis thaliana are Modified by Flavonols

Christoph Ringlia,b, Benjamin M. Kuhna,c, and Laurent Biglera,b

aCorrespondence: C. Ringli, Tel.: +41 44 634 82 33, E-mail: chringli@botinst.uzh.ch; L. Bigler, Tel.: +41 44 635 42 86, E-mail: lbigler@oci.uzh.ch
bInstitute of Plant Biology, University of Zürich, Zollikerstrasse 107, CH-8008 Zürich
cInstitute of Organic Chemistry, University of Zürich, Winterthurerstrasse 190, CH-8057 Zürich

Keywords: Arabidopsis - Auxin - Epidermal cells - Flavonols - UHPLC-HR-MS/MS

Cell Growth Processes in Arabidopsis thaliana are Modified by Flavonols

The phenylpropanoid pathway (PPP) is a biosynthetic process ubiquitously found in plants. A large array of compounds is produced by the PPP including lignin for wood formation, phytoalexins which serve as a line of defense against pathogens, or anthocyanins (a group of flavonoids) which protect the plant from UV-induced damage. Flavonols form a second subgroup of flavonoids and are attracting increasing attention due to their suggested health-beneficial effects.

Most of the flavonols accumulating in the model plant Arabidopsis thaliana are glycosylated with either glucose or rhamnose. The mutant plant rol1-2 is affected in the synthesis of rhamnose, shows a modified flavonol glycoside accumulation, and exhibits a distorted cell growth phenotype. UHPLC-HR-MS/MS analysis was used to identify and quantify the exact flavonol glycoside composition. The biological significance of this change in the flavonol glycosylation profile was assessed by genetic means. Blocking flavonol biosynthesis in the rol1-2 mutant, by introducing mutations in genes coding for enzymes active in the PPP pathway, leads to suppression of the rol1-2 cell growth phenotype. Hence, flavonols accumulating in the rol1-2 mutant interfere with proper cell development. One of several potential modes of action of flavonols is to modify the transport activity of auxin, a major plant hormone that affects numerous plant developmental processes. Auxin is not produced by all but only a restricted number of cells and must be transported to the target tissues. While the rol1-2 mutant shows altered transport and accumulation of auxin in the plant shoot, this effect is reverted to wild-type levels by blocking flavonol biosynthesis.

Hence, the rol1-2 mutant of Arabidopsis thaliana shows an alteration in the flavonol glycoside accumulation profile which was analyzed in detail by UHPLC-HR-MS/MS. The observed changes have a direct effect on cell growth processes in the rol1-2 mutant, which thus can serve as a model system to investigate in detail the mode of action of flavonols on plant development.

Received: June 7, 2012

References