Header

UZH-Logo

Maintenance Infos

Cobinamide chemistries for photometric cyanide determination. A merging zone liquid core waveguide cyanide analyzer using cyanoaquacobinamide


Ma, Jian; Dasgupta, Purnendu K; Zelder, Felix H; Boss, Gerry R (2012). Cobinamide chemistries for photometric cyanide determination. A merging zone liquid core waveguide cyanide analyzer using cyanoaquacobinamide. Analytica Chimica Acta, 736:78-84.

Abstract

Diaquacobinamide (H2O)(2)Cbi(2+) or its conjugate base hydroxyaquacobinamide (OH(H2O)Cbi(+))) can bind up to two cyanide ions, making dicyanocobinamide. This transition is accompanied by a significant change in color, previously exploited for cyanide determination. The reagent OH(H2O)Cbi(+) is used in excess; when trace amounts of cyanide are added, CN(H2O)Cbi(+) should be formed. But the spectral absorption of CN(H2O)Cbi(+) is virtually the same as that of OH(H2O)Cbi(+). It has been inexplicable how trace amounts of cyanide are sensitively measured by this reaction. it is shown here that even with excess OH(H2O)Cbi(+), (CN)(2)Cbi is formed first due to kinetic reasons; this only slowly forms CN(H2O)Cbi(+). This understanding implies that CN(H2O)Cbi(+) will itself be a better reagent. We describe a single valve merging zone flow analyzer that allows both sample and reagent economy. With a 50 cm liquid core waveguide (LCW) flow cell and an inexpensive fiber optic - charge coupled device array spectrometer, a S/N = 3 limit of detection of 8 nM, a linear dynamic range to 6 mu M, and excellent precision (RSD 0.49% and 1.07% at 50 and 100 nM, respectively, n = 5 each) are formed. At 1% carryover, sample throughput is 40 h(-1). The setup is readily used to measure thiocyanate with different reagents. We demonstrate applicability to real samples by analyzing human saliva samples and hydrolyzed extracts of apple seeds, peach pits, and almonds.

Abstract

Diaquacobinamide (H2O)(2)Cbi(2+) or its conjugate base hydroxyaquacobinamide (OH(H2O)Cbi(+))) can bind up to two cyanide ions, making dicyanocobinamide. This transition is accompanied by a significant change in color, previously exploited for cyanide determination. The reagent OH(H2O)Cbi(+) is used in excess; when trace amounts of cyanide are added, CN(H2O)Cbi(+) should be formed. But the spectral absorption of CN(H2O)Cbi(+) is virtually the same as that of OH(H2O)Cbi(+). It has been inexplicable how trace amounts of cyanide are sensitively measured by this reaction. it is shown here that even with excess OH(H2O)Cbi(+), (CN)(2)Cbi is formed first due to kinetic reasons; this only slowly forms CN(H2O)Cbi(+). This understanding implies that CN(H2O)Cbi(+) will itself be a better reagent. We describe a single valve merging zone flow analyzer that allows both sample and reagent economy. With a 50 cm liquid core waveguide (LCW) flow cell and an inexpensive fiber optic - charge coupled device array spectrometer, a S/N = 3 limit of detection of 8 nM, a linear dynamic range to 6 mu M, and excellent precision (RSD 0.49% and 1.07% at 50 and 100 nM, respectively, n = 5 each) are formed. At 1% carryover, sample throughput is 40 h(-1). The setup is readily used to measure thiocyanate with different reagents. We demonstrate applicability to real samples by analyzing human saliva samples and hydrolyzed extracts of apple seeds, peach pits, and almonds.

Statistics

Citations

25 citations in Web of Science®
25 citations in Scopus®
Google Scholar™

Altmetrics

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:07 Faculty of Science > Department of Chemistry
Dewey Decimal Classification:540 Chemistry
Language:English
Date:2012
Deposited On:04 Mar 2013 13:58
Last Modified:05 Apr 2016 16:35
Publisher:Elsevier
ISSN:0003-2670
Publisher DOI:https://doi.org/10.1016/j.aca.2012.05.028

Download

Full text not available from this repository.
View at publisher