Header

UZH-Logo

Maintenance Infos

Enhancement of motor imagery related cortical activation during first-person observation measured by functional near-infrared spectroscopy


Kobashi, N; Holper, L; Scholkmann, F; Kiper, D; Eng, K (2012). Enhancement of motor imagery related cortical activation during first-person observation measured by functional near-infrared spectroscopy. European Journal of Neuroscience. Supplement, 35(9):1513-1521.

Abstract

It is known that activity in secondary motor areas during observation of human limbs performing actions is affected by the observer’s viewpoint, with first-person views generally leading to stronger activation. However, previous neuroimaging studies have displayed limbs in front of the observer, providing an offset view of the limbs without a truly first-person viewpoint. It is unknown to what extent these pseudo-first-person viewpoints have affected the results published to date. In this experiment, we used a horizontal two-dimensional mirrored display that places virtual limbs at the correct egocentric position relative to the observer. We compared subjects using the mirrored and conventional displays while recording over the premotor cortex with functional near-infrared spectroscopy. Subjects watched a first-person view of virtual arms grasping incoming balls on-screen; they were instructed to either imagine the virtual arm as their own [motor imagery during observation (MIO)] or to execute the movements [motor execution (ME)]. With repeated-measures anova, the hemoglobin difference as a direct index of cortical oxygenation revealed significant main effects of the factors hemisphere (P = 0.005) and condition (P ≤ 0.001) with significant post hoc differences between MIO-mirror and MIO-conventional (P = 0.024). These results suggest that the horizontal mirrored display provides a more accurate first-person view, enhancing subjects’ ability to perform motor imagery during observation. Our results may have implications for future experimental designs involving motor imagery, and may also have applications in video gaming and virtual reality therapy, such as for patients following stroke.

Abstract

It is known that activity in secondary motor areas during observation of human limbs performing actions is affected by the observer’s viewpoint, with first-person views generally leading to stronger activation. However, previous neuroimaging studies have displayed limbs in front of the observer, providing an offset view of the limbs without a truly first-person viewpoint. It is unknown to what extent these pseudo-first-person viewpoints have affected the results published to date. In this experiment, we used a horizontal two-dimensional mirrored display that places virtual limbs at the correct egocentric position relative to the observer. We compared subjects using the mirrored and conventional displays while recording over the premotor cortex with functional near-infrared spectroscopy. Subjects watched a first-person view of virtual arms grasping incoming balls on-screen; they were instructed to either imagine the virtual arm as their own [motor imagery during observation (MIO)] or to execute the movements [motor execution (ME)]. With repeated-measures anova, the hemoglobin difference as a direct index of cortical oxygenation revealed significant main effects of the factors hemisphere (P = 0.005) and condition (P ≤ 0.001) with significant post hoc differences between MIO-mirror and MIO-conventional (P = 0.024). These results suggest that the horizontal mirrored display provides a more accurate first-person view, enhancing subjects’ ability to perform motor imagery during observation. Our results may have implications for future experimental designs involving motor imagery, and may also have applications in video gaming and virtual reality therapy, such as for patients following stroke.

Statistics

Citations

7 citations in Web of Science®
7 citations in Scopus®
Google Scholar™

Altmetrics

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:07 Faculty of Science > Institute of Neuroinformatics
Dewey Decimal Classification:570 Life sciences; biology
Language:English
Date:2012
Deposited On:07 Mar 2013 09:22
Last Modified:05 Apr 2016 16:36
Publisher:Published by the Oxford University Press on behalf of the European Neuroscience Association
Series Name:European Journal of Neuroscience
Number of Pages:9
ISSN:1359-5962
Publisher DOI:https://doi.org/10.1111/j.1460-9568.2012.08062.x
PubMed ID:22509955

Download

Full text not available from this repository.
View at publisher

TrendTerms

TrendTerms displays relevant terms of the abstract of this publication and related documents on a map. The terms and their relations were extracted from ZORA using word statistics. Their timelines are taken from ZORA as well. The bubble size of a term is proportional to the number of documents where the term occurs. Red, orange, yellow and green colors are used for terms that occur in the current document; red indicates high interlinkedness of a term with other terms, orange, yellow and green decreasing interlinkedness. Blue is used for terms that have a relation with the terms in this document, but occur in other documents.
You can navigate and zoom the map. Mouse-hovering a term displays its timeline, clicking it yields the associated documents.

Author Collaborations