Header

UZH-Logo

Maintenance Infos

Training spiking neural networks to associate spatio-temporal input-output spike patterns


Mohemmed, A; Schliebs, S; Matsuda, S; Kasabov, N (2013). Training spiking neural networks to associate spatio-temporal input-output spike patterns. Neurocomputing, 107:3-10.

Abstract

In a previous work (Mohemmed et al., Method for training a spiking neuron to associate input–output spike trains) [1] we have proposed a supervised learning algorithm based on temporal coding to train a spiking neuron to associate input spatiotemporal spike patterns to desired output spike patterns. The algorithm is based on the conversion of spike trains into analogue signals and the application of the Widrow–Hoff learning rule. In this paper we present a mathematical formulation of the proposed learning rule. Furthermore, we extend the application of the algorithm to train a SNN consisting of multiple spiking neurons to perform spatiotemporal pattern classification and we show that the accuracy of classification is improved significantly over a single spiking neuron. We also investigate a number of possibilities to map the temporal output of the trained spiking neuron into a class label. Potential applications for motor control in neuro-rehabilitation and neuro-prosthetics are discussed as a future work.

Abstract

In a previous work (Mohemmed et al., Method for training a spiking neuron to associate input–output spike trains) [1] we have proposed a supervised learning algorithm based on temporal coding to train a spiking neuron to associate input spatiotemporal spike patterns to desired output spike patterns. The algorithm is based on the conversion of spike trains into analogue signals and the application of the Widrow–Hoff learning rule. In this paper we present a mathematical formulation of the proposed learning rule. Furthermore, we extend the application of the algorithm to train a SNN consisting of multiple spiking neurons to perform spatiotemporal pattern classification and we show that the accuracy of classification is improved significantly over a single spiking neuron. We also investigate a number of possibilities to map the temporal output of the trained spiking neuron into a class label. Potential applications for motor control in neuro-rehabilitation and neuro-prosthetics are discussed as a future work.

Statistics

Citations

21 citations in Web of Science®
25 citations in Scopus®
Google Scholar™

Altmetrics

Downloads

61 downloads since deposited on 07 Mar 2013
18 downloads since 12 months
Detailed statistics

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:07 Faculty of Science > Institute of Neuroinformatics
Dewey Decimal Classification:570 Life sciences; biology
Language:English
Date:2013
Deposited On:07 Mar 2013 09:28
Last Modified:05 Apr 2016 16:36
Publisher:Elsevier
Series Name:Neurocomputing
Number of Pages:8
ISSN:0925-2312
Publisher DOI:https://doi.org/10.1016/j.neucom.2012.08.034

Download

Preview Icon on Download
Preview
Content: Accepted Version
Filetype: PDF
Size: 553kB
View at publisher

TrendTerms

TrendTerms displays relevant terms of the abstract of this publication and related documents on a map. The terms and their relations were extracted from ZORA using word statistics. Their timelines are taken from ZORA as well. The bubble size of a term is proportional to the number of documents where the term occurs. Red, orange, yellow and green colors are used for terms that occur in the current document; red indicates high interlinkedness of a term with other terms, orange, yellow and green decreasing interlinkedness. Blue is used for terms that have a relation with the terms in this document, but occur in other documents.
You can navigate and zoom the map. Mouse-hovering a term displays its timeline, clicking it yields the associated documents.

Author Collaborations