Header

UZH-Logo

Maintenance Infos

Nest-mark orientation versus vector navigation in desert ants


Bregy, P; Sommer, S; Wehner, R (2008). Nest-mark orientation versus vector navigation in desert ants. Journal of Experimental Biology, 211(12):1868-1873.

Abstract

Foraging ants and bees use path-integration vectors and landmark cues for navigation. When in particular experimental paradigms the two types of information – vector-based and landmark-based information – are made to compete with each other, the insect may weight either source more heavily depending on the navigational context and the animal's motivational state. Here we studied the effects of a displaced nest mark on the homing performances of Cataglyphis ants. Foragers were trained to shuttle between the nest, which was marked by a black cylinder (the beacon), and an artificial feeder. Trained ants were captured at the feeder and transferred to a distant test field, where they experienced the nest mark at various positions relative to their home vector. When the beacon was positioned to one side of the point of release, the ants slightly drifted towards the beacon right at the start of their inbound run, but thereafter resumed their home-vector courses. When the nest mark appeared to one side further down the homing course, the ants set off in the home-vector direction, but then gradually drifted towards the beacon. The distance, at which this occurred, and the ants' drift from the home-vector course were very similar across test conditions. During the final search for the nest, landmark information dominated the ants' path integrator. The results clearly show that nest-mark memories are effective during the entire vector-based homeward course, but that they are either only partly activated or partly used unless the state of the ants' path integrator is close to zero.

Abstract

Foraging ants and bees use path-integration vectors and landmark cues for navigation. When in particular experimental paradigms the two types of information – vector-based and landmark-based information – are made to compete with each other, the insect may weight either source more heavily depending on the navigational context and the animal's motivational state. Here we studied the effects of a displaced nest mark on the homing performances of Cataglyphis ants. Foragers were trained to shuttle between the nest, which was marked by a black cylinder (the beacon), and an artificial feeder. Trained ants were captured at the feeder and transferred to a distant test field, where they experienced the nest mark at various positions relative to their home vector. When the beacon was positioned to one side of the point of release, the ants slightly drifted towards the beacon right at the start of their inbound run, but thereafter resumed their home-vector courses. When the nest mark appeared to one side further down the homing course, the ants set off in the home-vector direction, but then gradually drifted towards the beacon. The distance, at which this occurred, and the ants' drift from the home-vector course were very similar across test conditions. During the final search for the nest, landmark information dominated the ants' path integrator. The results clearly show that nest-mark memories are effective during the entire vector-based homeward course, but that they are either only partly activated or partly used unless the state of the ants' path integrator is close to zero.

Statistics

Citations

24 citations in Web of Science®
23 citations in Scopus®
Google Scholar™

Altmetrics

Downloads

25 downloads since deposited on 18 Apr 2013
6 downloads since 12 months
Detailed statistics

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:07 Faculty of Science > Institute of Zoology (former)
Dewey Decimal Classification:570 Life sciences; biology
590 Animals (Zoology)
Language:English
Date:15 June 2008
Deposited On:18 Apr 2013 08:47
Last Modified:05 Apr 2016 16:39
Publisher:Company of Biologists
ISSN:0022-0949
Publisher DOI:https://doi.org/10.1242/jeb.018036

Download

Preview Icon on Download
Preview
Content: Published Version
Filetype: PDF
Size: 411kB
View at publisher