Header

UZH-Logo

Maintenance Infos

N-Methyl-2,2’-dipicolylamine domplexes as potential models for metal-mediated base pairs


Seubert, K; Böhme, D; Kösters, J; Shen, W-Z; Freisinger, Eva; Müller, Jens (2012). N-Methyl-2,2’-dipicolylamine domplexes as potential models for metal-mediated base pairs. Zeitschrift für Anorganische und Allgemeine Chemie, 638:1761-1767.

Abstract

Metal-mediated base pairs can be used to insert metal ions
into nucleic acids at precisely defined positions. As structural data on the resulting metal-modified DNA are scarce, appropriate model complexes need to be synthesized and structurally characterized. Accordingly, the molecular structures of nine transition metal complexes of N-methyl-2,2’-dipicolylamine (dipic) are reported. In combination with an azole-containing artificial nucleoside, this tridentate ligand had recently been used to generate metal-mediated base pairs (Chem. Commun. 2011, 47, 11041–11043). The PdII and PtII complexes reported here confirm that the formation of planar complexes (as required for a metal-mediated base pair) comprising N-methyl-2,2’-dipicolylamine is possible. Two HgII complexes with differing stoichiometry indicate that a planar structure might also be formed with this metal ion, even though it is not favored. In the complex [Ag2(dipic)2](ClO4)2, the two AgI ions are located close to one another with an Ag···Ag distance of 2.9152(3) Å, suggesting the presence of a strong argentophilic interaction.

Abstract

Metal-mediated base pairs can be used to insert metal ions
into nucleic acids at precisely defined positions. As structural data on the resulting metal-modified DNA are scarce, appropriate model complexes need to be synthesized and structurally characterized. Accordingly, the molecular structures of nine transition metal complexes of N-methyl-2,2’-dipicolylamine (dipic) are reported. In combination with an azole-containing artificial nucleoside, this tridentate ligand had recently been used to generate metal-mediated base pairs (Chem. Commun. 2011, 47, 11041–11043). The PdII and PtII complexes reported here confirm that the formation of planar complexes (as required for a metal-mediated base pair) comprising N-methyl-2,2’-dipicolylamine is possible. Two HgII complexes with differing stoichiometry indicate that a planar structure might also be formed with this metal ion, even though it is not favored. In the complex [Ag2(dipic)2](ClO4)2, the two AgI ions are located close to one another with an Ag···Ag distance of 2.9152(3) Å, suggesting the presence of a strong argentophilic interaction.

Statistics

Citations

11 citations in Web of Science®
11 citations in Scopus®
Google Scholar™

Altmetrics

Downloads

1 download since deposited on 13 Mar 2013
0 downloads since 12 months
Detailed statistics

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:07 Faculty of Science > Department of Chemistry
Dewey Decimal Classification:540 Chemistry
Language:English
Date:2012
Deposited On:13 Mar 2013 14:44
Last Modified:05 Apr 2016 16:40
Publisher:Wiley-Blackwell
ISSN:0044-2313
Publisher DOI:https://doi.org/10.1002/zaac.201200089

Download

Preview Icon on Download
Content: Published Version
Filetype: PDF - Registered users only
Size: 584kB
View at publisher

TrendTerms

TrendTerms displays relevant terms of the abstract of this publication and related documents on a map. The terms and their relations were extracted from ZORA using word statistics. Their timelines are taken from ZORA as well. The bubble size of a term is proportional to the number of documents where the term occurs. Red, orange, yellow and green colors are used for terms that occur in the current document; red indicates high interlinkedness of a term with other terms, orange, yellow and green decreasing interlinkedness. Blue is used for terms that have a relation with the terms in this document, but occur in other documents.
You can navigate and zoom the map. Mouse-hovering a term displays its timeline, clicking it yields the associated documents.

Author Collaborations