Header

UZH-Logo

Maintenance Infos

Acute stress reduces wound-induced activation of microbicidal potential of ex vivo isolated human monocyte-derived macrophages


Kuebler, Ulrike; Wirtz, Petra H; Sakai, Miho; Stemmer, Andreas; Ehlert, Ulrike (2013). Acute stress reduces wound-induced activation of microbicidal potential of ex vivo isolated human monocyte-derived macrophages. PLoS ONE, 8(2):e55875.

Abstract

BACKGROUND:

Psychological stress delays wound healing but the precise underlying mechanisms are unclear. Macrophages play an important role in wound healing, in particular by killing microbes. We hypothesized that (a) acute psychological stress reduces wound-induced activation of microbicidal potential of human monocyte-derived macrophages (HMDM), and (b) that these reductions are modulated by stress hormone release.

METHODS:

Fourty-one healthy men (mean age 35±13 years) were randomly assigned to either a stress or stress-control group. While the stress group underwent a standardized short-term psychological stress task after catheter-induced wound infliction, stress-controls did not. Catheter insertion was controlled. Assessing the microbicidal potential, we investigated PMA-activated superoxide anion production by HMDM immediately before and 1, 10 and 60 min after stress/rest. Moreover, plasma norepinephrine and epinephrine and salivary cortisol were repeatedly measured. In subsequent in vitro studies, whole blood was incubated with norepinephrine in the presence or absence of phentolamine (norepinephrine blocker) before assessing HMDM microbicidal potential.

RESULTS:

Compared with stress-controls, HMDM of the stressed subjects displayed decreased superoxide anion-responses after stress (p's <.05). Higher plasma norepinephrine levels statistically mediated lower amounts of superoxide anion-responses (indirect effect 95% CI: 4.14-44.72). Norepinephrine-treated HMDM showed reduced superoxide anion-production (p<.001). This effect was blocked by prior incubation with phentolamine.

CONCLUSIONS:

Our results suggest that acute psychological stress reduces wound-induced activation of microbicidal potential of HMDM and that this reduction is mediated by norepinephrine. This might have implications for stress-induced impairment in wound healing.

Abstract

BACKGROUND:

Psychological stress delays wound healing but the precise underlying mechanisms are unclear. Macrophages play an important role in wound healing, in particular by killing microbes. We hypothesized that (a) acute psychological stress reduces wound-induced activation of microbicidal potential of human monocyte-derived macrophages (HMDM), and (b) that these reductions are modulated by stress hormone release.

METHODS:

Fourty-one healthy men (mean age 35±13 years) were randomly assigned to either a stress or stress-control group. While the stress group underwent a standardized short-term psychological stress task after catheter-induced wound infliction, stress-controls did not. Catheter insertion was controlled. Assessing the microbicidal potential, we investigated PMA-activated superoxide anion production by HMDM immediately before and 1, 10 and 60 min after stress/rest. Moreover, plasma norepinephrine and epinephrine and salivary cortisol were repeatedly measured. In subsequent in vitro studies, whole blood was incubated with norepinephrine in the presence or absence of phentolamine (norepinephrine blocker) before assessing HMDM microbicidal potential.

RESULTS:

Compared with stress-controls, HMDM of the stressed subjects displayed decreased superoxide anion-responses after stress (p's <.05). Higher plasma norepinephrine levels statistically mediated lower amounts of superoxide anion-responses (indirect effect 95% CI: 4.14-44.72). Norepinephrine-treated HMDM showed reduced superoxide anion-production (p<.001). This effect was blocked by prior incubation with phentolamine.

CONCLUSIONS:

Our results suggest that acute psychological stress reduces wound-induced activation of microbicidal potential of HMDM and that this reduction is mediated by norepinephrine. This might have implications for stress-induced impairment in wound healing.

Statistics

Citations

7 citations in Web of Science®
7 citations in Scopus®
Google Scholar™

Altmetrics

Downloads

63 downloads since deposited on 05 Mar 2013
7 downloads since 12 months
Detailed statistics

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:06 Faculty of Arts > Institute of Psychology
Dewey Decimal Classification:150 Psychology
Language:English
Date:2013
Deposited On:05 Mar 2013 09:39
Last Modified:07 Dec 2017 20:37
Publisher:Public Library of Science (PLoS)
ISSN:1932-6203
Free access at:PubMed ID. An embargo period may apply.
Publisher DOI:https://doi.org/10.1371/journal.pone.0055875
PubMed ID:23431364

Download

Download PDF  'Acute stress reduces wound-induced activation of microbicidal potential of ex vivo isolated human monocyte-derived macrophages'.
Preview
Content: Published Version
Filetype: PDF
Size: 371kB
View at publisher
Licence: Creative Commons: Attribution 4.0 International (CC BY 4.0)