Header

UZH-Logo

Maintenance Infos

Lateral and depth variation of loess organic matter overprint related to rhizoliths — Revealed by lipid molecular proxies and X-ray tomography - Zurich Open Repository and Archive


Gocke, Martina; Peth, Stephan; Wiesenberg, Guido L B (2014). Lateral and depth variation of loess organic matter overprint related to rhizoliths — Revealed by lipid molecular proxies and X-ray tomography. Catena, 112:72-85.

Abstract

Terrestrial sediments like loess are well known for their paleoenvironmental significance. Although organic carbon contents are commonly very low, loess and organic matter (LOM) thereof is regarded as important terrestrial archive for vegetation and climate during deposition. However, the LOM signal is prone to contamination by OM of other age and origin than the synsedimentary vegetation, e.g. by postsedimentary deep-rooting plants. We hypothesized that the influence of rhizosphere effects related to deep-rooting plants varies with depth in quality, quantity and distance to the former root.
The 13 m thick late Pleistocene loess-paleosol sequence at Nussloch (SW Germany) contains rhizoliths (calcified roots) of Holocene age. With the carbonatic encrustation leading to preservation of former root deposits, rhizoliths allow for assessment of rhizosphere processes that occurred during the root's lifetime. Several horizontal transects comprising rhizoliths, surrounding loess (rhizoloess) up to a distance of 11 cm from rhizoliths, and root-free reference loess from different depth intervals, were analyzed for their carbon (C), alkane and fatty acid (FA) composition.
Alkane proxies like carbon preference index (CPI), average chain length (ACL), as well as n-C27/n-C31 and n-C29/n-C31 ratios indicated grass vegetation as origin of LOM, while rhizoliths derived from woody vegeta- tion. Several lipid molecular proxies, e.g. short chain/long chain alkanes, long chain alkane composition and long chain/very long chain FA, indicated the incorporation of considerable amounts of root and rhizomicrobial OM. The rhizosphere effect, i.e. postsedimentary overprint of initial LOM in the vicinity of roots, was not re- stricted to few mm around the former root, but notable to distances of at least 5 cm and possibly more. This was confirmed by X-ray tomography analyses enabling identification of small calcified root remains and non-calcified root channels in the former rhizosphere, which could not be identified under field conditions. In depth intervals with high rhizolith frequency, this entailed lateral overprint of large parts of loess, which in depths of 1.95 and 3.2 m below present surface can cover the whole loess due to extension of the former rhizosphere of >5 cm.
Regarding the high rhizolith frequency (maximizing at 200 m!2 at ~2.6 m depth) at Nussloch, these findings raise the importance of deep-rooting plants as potential source for significant postsedimentary overprint of loess-paleosol sequences.

Abstract

Terrestrial sediments like loess are well known for their paleoenvironmental significance. Although organic carbon contents are commonly very low, loess and organic matter (LOM) thereof is regarded as important terrestrial archive for vegetation and climate during deposition. However, the LOM signal is prone to contamination by OM of other age and origin than the synsedimentary vegetation, e.g. by postsedimentary deep-rooting plants. We hypothesized that the influence of rhizosphere effects related to deep-rooting plants varies with depth in quality, quantity and distance to the former root.
The 13 m thick late Pleistocene loess-paleosol sequence at Nussloch (SW Germany) contains rhizoliths (calcified roots) of Holocene age. With the carbonatic encrustation leading to preservation of former root deposits, rhizoliths allow for assessment of rhizosphere processes that occurred during the root's lifetime. Several horizontal transects comprising rhizoliths, surrounding loess (rhizoloess) up to a distance of 11 cm from rhizoliths, and root-free reference loess from different depth intervals, were analyzed for their carbon (C), alkane and fatty acid (FA) composition.
Alkane proxies like carbon preference index (CPI), average chain length (ACL), as well as n-C27/n-C31 and n-C29/n-C31 ratios indicated grass vegetation as origin of LOM, while rhizoliths derived from woody vegeta- tion. Several lipid molecular proxies, e.g. short chain/long chain alkanes, long chain alkane composition and long chain/very long chain FA, indicated the incorporation of considerable amounts of root and rhizomicrobial OM. The rhizosphere effect, i.e. postsedimentary overprint of initial LOM in the vicinity of roots, was not re- stricted to few mm around the former root, but notable to distances of at least 5 cm and possibly more. This was confirmed by X-ray tomography analyses enabling identification of small calcified root remains and non-calcified root channels in the former rhizosphere, which could not be identified under field conditions. In depth intervals with high rhizolith frequency, this entailed lateral overprint of large parts of loess, which in depths of 1.95 and 3.2 m below present surface can cover the whole loess due to extension of the former rhizosphere of >5 cm.
Regarding the high rhizolith frequency (maximizing at 200 m!2 at ~2.6 m depth) at Nussloch, these findings raise the importance of deep-rooting plants as potential source for significant postsedimentary overprint of loess-paleosol sequences.

Statistics

Citations

13 citations in Web of Science®
12 citations in Scopus®
Google Scholar™

Altmetrics

Downloads

1 download since deposited on 14 Mar 2013
0 downloads since 12 months
Detailed statistics

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:07 Faculty of Science > Institute of Geography
Dewey Decimal Classification:910 Geography & travel
Language:English
Date:2014
Deposited On:14 Mar 2013 09:48
Last Modified:05 Apr 2016 16:41
Publisher:Elsevier
ISSN:0341-8162
Publisher DOI:https://doi.org/10.1016/j.catena.2012.11.011

Download

Preview Icon on Download
Content: Published Version
Language: English
Filetype: PDF - Registered users only
Size: 1MB
View at publisher

TrendTerms

TrendTerms displays relevant terms of the abstract of this publication and related documents on a map. The terms and their relations were extracted from ZORA using word statistics. Their timelines are taken from ZORA as well. The bubble size of a term is proportional to the number of documents where the term occurs. Red, orange, yellow and green colors are used for terms that occur in the current document; red indicates high interlinkedness of a term with other terms, orange, yellow and green decreasing interlinkedness. Blue is used for terms that have a relation with the terms in this document, but occur in other documents.
You can navigate and zoom the map. Mouse-hovering a term displays its timeline, clicking it yields the associated documents.

Author Collaborations