Header

UZH-Logo

Maintenance Infos

Lignin is preserved in the fine silt fraction of an arable Luvisol


Heim, Alexander; Schmidt, Michael W I (2007). Lignin is preserved in the fine silt fraction of an arable Luvisol. Organic Geochemistry, 38(12):2001-2011.

Abstract

Knowledge about the fate of individual biomolecules during the decomposition process in soil is limited. We used the natural isotopic label introduced by 23 years of continuous maize cropping, together with compound specific ¹³C isotope analysis, to study lignin monomers in particle size fractions of a Luvisol. Isotope data indicated apparent decadal turnover times for lignin. A kinetic model suggests the existence of a fast and a slow decomposing lignin pool in the soil, reconciling a low stock-to-input ratio with decadal turnover times. We found new, maize-derived lignin primarily in the 63–2000 lm fraction, whereas old, C₃-derived lignin from the pre-maize vegetation had accumulated mainly in the silt (2–20 lm) fraction. This distribution of lignin differed from that of total organic carbon, which was concentrated in the <2 lm fraction. Old, C₃-derived carbon in all the soil fractions was depleted in lignin compared to new, maize-derived carbon. The observation that the 2–20 lm fraction was less depleted than the others indicates that lignin preservation is particle size specific, but the underlying mechanism controlling its preservation is not clear.

Abstract

Knowledge about the fate of individual biomolecules during the decomposition process in soil is limited. We used the natural isotopic label introduced by 23 years of continuous maize cropping, together with compound specific ¹³C isotope analysis, to study lignin monomers in particle size fractions of a Luvisol. Isotope data indicated apparent decadal turnover times for lignin. A kinetic model suggests the existence of a fast and a slow decomposing lignin pool in the soil, reconciling a low stock-to-input ratio with decadal turnover times. We found new, maize-derived lignin primarily in the 63–2000 lm fraction, whereas old, C₃-derived lignin from the pre-maize vegetation had accumulated mainly in the silt (2–20 lm) fraction. This distribution of lignin differed from that of total organic carbon, which was concentrated in the <2 lm fraction. Old, C₃-derived carbon in all the soil fractions was depleted in lignin compared to new, maize-derived carbon. The observation that the 2–20 lm fraction was less depleted than the others indicates that lignin preservation is particle size specific, but the underlying mechanism controlling its preservation is not clear.

Statistics

Citations

Dimensions.ai Metrics
24 citations in Web of Science®
27 citations in Scopus®
26 citations in Microsoft Academic
Google Scholar™

Altmetrics

Downloads

2 downloads since deposited on 25 Mar 2013
0 downloads since 12 months
Detailed statistics

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:07 Faculty of Science > Institute of Geography
Dewey Decimal Classification:910 Geography & travel
Language:English
Date:2007
Deposited On:25 Mar 2013 09:55
Last Modified:18 Feb 2018 13:07
Publisher:Elsevier
ISSN:0146-6380
OA Status:Closed
Publisher DOI:https://doi.org/10.1016/j.orggeochem.2007.08.009

Download