Header

UZH-Logo

Maintenance Infos

Remote sensing and GIS technology in the Global Land Ice Measurements from Space (GLIMS) project


Raup, Bruce; Kääb, Andreas; Kargel, Jeffrey S; Bishop, Michael P; Hamilton, Gordon; Lee, Ella; Paul, Frank; Rau, Frank; Soltesz, Deborah; Khalsa, Siri Jodha Singh; Beedle, Matthew; Helm, Christopher (2007). Remote sensing and GIS technology in the Global Land Ice Measurements from Space (GLIMS) project. Computers & Geosciences, 33(1):104-125.

Abstract

Global Land Ice Measurements from Space (GLIMS) is an international consortium established to acquire satellite images of the world’s glaciers, analyze them for glacier extent and changes, and to assess these change data in terms of forcings. The consortium is organized into a system of Regional Centers, each of which is responsible for glaciers in their region of expertise. Specialized needs for mapping glaciers in a distributed analysis environment require considerable work developing software tools: terrain classification emphasizing snow, ice, water, and admixtures of ice with rock debris; change detection and analysis; visualization of images and derived data; interpretation and archival of derived data; and analysis to ensure consistency of results from different Regional Centers. A global glacier database has been designed and implemented at the National Snow and Ice Data Center (Boulder, CO); parameters have been expanded from those of the World Glacier Inventory (WGI), and the database has been structured to be compatible with (and to incorporate) WGI data. The project as a whole was originated, and has been coordinated by, the US Geological Survey (Flagstaff, AZ), which has also led the development of an interactive tool for automated analysis and manual editing of glacier images and derived data (GLIMSView). This article addresses remote sensing and Geographic Information Science techniques developed within the framework of GLIMS in order to fulfill the goals of this distributed project. Sample applications illustrating the developed techniques are also shown.

Abstract

Global Land Ice Measurements from Space (GLIMS) is an international consortium established to acquire satellite images of the world’s glaciers, analyze them for glacier extent and changes, and to assess these change data in terms of forcings. The consortium is organized into a system of Regional Centers, each of which is responsible for glaciers in their region of expertise. Specialized needs for mapping glaciers in a distributed analysis environment require considerable work developing software tools: terrain classification emphasizing snow, ice, water, and admixtures of ice with rock debris; change detection and analysis; visualization of images and derived data; interpretation and archival of derived data; and analysis to ensure consistency of results from different Regional Centers. A global glacier database has been designed and implemented at the National Snow and Ice Data Center (Boulder, CO); parameters have been expanded from those of the World Glacier Inventory (WGI), and the database has been structured to be compatible with (and to incorporate) WGI data. The project as a whole was originated, and has been coordinated by, the US Geological Survey (Flagstaff, AZ), which has also led the development of an interactive tool for automated analysis and manual editing of glacier images and derived data (GLIMSView). This article addresses remote sensing and Geographic Information Science techniques developed within the framework of GLIMS in order to fulfill the goals of this distributed project. Sample applications illustrating the developed techniques are also shown.

Statistics

Citations

117 citations in Web of Science®
123 citations in Scopus®
Google Scholar™

Altmetrics

Downloads

1 download since deposited on 28 Mar 2013
0 downloads since 12 months
Detailed statistics

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:07 Faculty of Science > Institute of Geography
Dewey Decimal Classification:910 Geography & travel
Language:English
Date:2007
Deposited On:28 Mar 2013 10:11
Last Modified:05 Apr 2016 16:43
Publisher:Elsevier
ISSN:0098-3004
Publisher DOI:https://doi.org/10.1016/j.cageo.2006.05.015

Download