Header

UZH-Logo

Maintenance Infos

Does the azimuth orientation of Norway spruce (Picea abies/L./Karst.) branches within sunlit crown part influence the heterogeneity of biochemical, structural and spectral characteristics of needles?


Lhotáková, Zuzana; Albrechtová, Jana; Malenovský, Zbyněk; Rock, Barrett N; Polák, Tomáš; Cudlín, Pavel (2007). Does the azimuth orientation of Norway spruce (Picea abies/L./Karst.) branches within sunlit crown part influence the heterogeneity of biochemical, structural and spectral characteristics of needles? Environmental and Experimental Botany, 59(3):283-292.

Abstract

The goal of this study was to determine if selected biochemical, structural and spectral properties of Norway spruce needles are influenced by the azimuth orientation of the branch. Three youngest needle age classes from 20 mature (100 years old or older) Norway spruce trees were sampled from upper branches of the sunlit production crown part from each of the 4 cardinal azimuth orientations. Photosynthetic pigments, soluble phenolic compounds and selected spectral and structural characteristics were determined for each needle age class. The content of photosynthetic pigments and soluble phenolic compounds did not differ among needles from different azimuth-oriented branches, nor did the optical reflectance indices Normalized Difference Vegetation Index (NDVI), Transformed Chlorophyll Absorption in Reflectance Index (TCARI)/Optimized Soil- Adjusted Vegetation Index (OSAVI), Red Edge Inflection Point (REIP) and Landsat Thematic Mapper bands 5 and 4 (TM5/TM4). No variation in volume properties, tissue volume proportions and cross-section shape characteristics of 3rd-year needles rejected our hypothesis that there would be variation in needle structural properties according to the azimuth orientation of branches. Consequently, we concluded that a random sampling of similar-aged needles within the sunlit production crown part may be used to study biochemical or structural and spectral needle properties of a mature Norway spruce growing in forest stands without a significant slope. In addition, the results obtained from a branch of one azimuth orientation should be representative for the whole sunlit portion of the crown. Consequences of these findings for Norway spruce health monitoring using remote sensing techniques are discussed.

Abstract

The goal of this study was to determine if selected biochemical, structural and spectral properties of Norway spruce needles are influenced by the azimuth orientation of the branch. Three youngest needle age classes from 20 mature (100 years old or older) Norway spruce trees were sampled from upper branches of the sunlit production crown part from each of the 4 cardinal azimuth orientations. Photosynthetic pigments, soluble phenolic compounds and selected spectral and structural characteristics were determined for each needle age class. The content of photosynthetic pigments and soluble phenolic compounds did not differ among needles from different azimuth-oriented branches, nor did the optical reflectance indices Normalized Difference Vegetation Index (NDVI), Transformed Chlorophyll Absorption in Reflectance Index (TCARI)/Optimized Soil- Adjusted Vegetation Index (OSAVI), Red Edge Inflection Point (REIP) and Landsat Thematic Mapper bands 5 and 4 (TM5/TM4). No variation in volume properties, tissue volume proportions and cross-section shape characteristics of 3rd-year needles rejected our hypothesis that there would be variation in needle structural properties according to the azimuth orientation of branches. Consequently, we concluded that a random sampling of similar-aged needles within the sunlit production crown part may be used to study biochemical or structural and spectral needle properties of a mature Norway spruce growing in forest stands without a significant slope. In addition, the results obtained from a branch of one azimuth orientation should be representative for the whole sunlit portion of the crown. Consequences of these findings for Norway spruce health monitoring using remote sensing techniques are discussed.

Statistics

Citations

13 citations in Web of Science®
12 citations in Scopus®
Google Scholar™

Altmetrics

Downloads

34 downloads since deposited on 04 Apr 2013
14 downloads since 12 months
Detailed statistics

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:07 Faculty of Science > Institute of Geography
Dewey Decimal Classification:910 Geography & travel
Language:English
Date:2007
Deposited On:04 Apr 2013 06:20
Last Modified:05 Apr 2016 16:43
Publisher:Elsevier
ISSN:0098-8472
Publisher DOI:https://doi.org/10.1016/j.envexpbot.2006.02.003

Download

Preview Icon on Download
Preview
Content: Published Version
Language: English
Filetype: PDF
Size: 581kB
View at publisher

TrendTerms

TrendTerms displays relevant terms of the abstract of this publication and related documents on a map. The terms and their relations were extracted from ZORA using word statistics. Their timelines are taken from ZORA as well. The bubble size of a term is proportional to the number of documents where the term occurs. Red, orange, yellow and green colors are used for terms that occur in the current document; red indicates high interlinkedness of a term with other terms, orange, yellow and green decreasing interlinkedness. Blue is used for terms that have a relation with the terms in this document, but occur in other documents.
You can navigate and zoom the map. Mouse-hovering a term displays its timeline, clicking it yields the associated documents.

Author Collaborations