Header

UZH-Logo

Maintenance Infos

Comparison of MS(2)-only, MSA, and MS(2)/MS(3) methodologies for phosphopeptide identification


Ulintz, Peter J; Yocum, Anastasia K; Bodenmiller, Bernd; Aebersold, Ruedi; Andrews, Philip C; Nesvizhskii, Alexey I (2009). Comparison of MS(2)-only, MSA, and MS(2)/MS(3) methodologies for phosphopeptide identification. Journal of Proteome Research, 8(2):887-899.

Abstract

Current mass spectrometers provide a number of alternative methodologies for producing tandem mass spectra specifically for phosphopeptide analysis. In particular, generation of MS(3) spectra in a data-dependent manner upon detection of the neutral loss of a phosphoric acid in MS(2) spectra is a popular technique for circumventing the problem of poor phosphopeptide backbone fragmentation. The newer Multistage Activation method provides another option. Both these strategies require additional cycle time on the instrument and therefore reduce the number of spectra that can be measured in the same amount of time. Additional informatics is often required to make most efficient use of the additional information provided by these spectra as well. This work presents a comparison of several commonly used mass spectrometry methods for the study of phosphopeptide-enriched samples: an MS(2)-only method, a Multistage Activation method, and an MS(2)/MS(3) data-dependent neutral loss method. Several strategies for dealing effectively with the resulting MS(3) data in the latter approach are also presented and compared. The overall goal is to infer whether any one methodology performs significantly better than another for identifying phosphopeptides. On data presented here, the Multistage Activation methodology is demonstrated to perform optimally and does not result in significant loss of unique peptide identifications.

Abstract

Current mass spectrometers provide a number of alternative methodologies for producing tandem mass spectra specifically for phosphopeptide analysis. In particular, generation of MS(3) spectra in a data-dependent manner upon detection of the neutral loss of a phosphoric acid in MS(2) spectra is a popular technique for circumventing the problem of poor phosphopeptide backbone fragmentation. The newer Multistage Activation method provides another option. Both these strategies require additional cycle time on the instrument and therefore reduce the number of spectra that can be measured in the same amount of time. Additional informatics is often required to make most efficient use of the additional information provided by these spectra as well. This work presents a comparison of several commonly used mass spectrometry methods for the study of phosphopeptide-enriched samples: an MS(2)-only method, a Multistage Activation method, and an MS(2)/MS(3) data-dependent neutral loss method. Several strategies for dealing effectively with the resulting MS(3) data in the latter approach are also presented and compared. The overall goal is to infer whether any one methodology performs significantly better than another for identifying phosphopeptides. On data presented here, the Multistage Activation methodology is demonstrated to perform optimally and does not result in significant loss of unique peptide identifications.

Statistics

Citations

51 citations in Web of Science®
56 citations in Scopus®
Google Scholar™

Altmetrics

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:07 Faculty of Science > Institute of Molecular Life Sciences
Dewey Decimal Classification:570 Life sciences; biology
Language:English
Date:2009
Deposited On:24 Apr 2013 11:18
Last Modified:05 Apr 2016 16:44
Publisher:American Chemical Society
ISSN:1535-3893
Publisher DOI:https://doi.org/10.1021/pr800535h
PubMed ID:19072539

Download

Full text not available from this repository.
View at publisher

TrendTerms

TrendTerms displays relevant terms of the abstract of this publication and related documents on a map. The terms and their relations were extracted from ZORA using word statistics. Their timelines are taken from ZORA as well. The bubble size of a term is proportional to the number of documents where the term occurs. Red, orange, yellow and green colors are used for terms that occur in the current document; red indicates high interlinkedness of a term with other terms, orange, yellow and green decreasing interlinkedness. Blue is used for terms that have a relation with the terms in this document, but occur in other documents.
You can navigate and zoom the map. Mouse-hovering a term displays its timeline, clicking it yields the associated documents.

Author Collaborations