Header

UZH-Logo

Maintenance Infos

Reproducible isolation of distinct, overlapping segments of the phosphoproteome


Bodenmiller, Bernd; Mueller, Lukas N; Mueller, Markus; Domon, Bruno; Aebersold, Ruedi (2007). Reproducible isolation of distinct, overlapping segments of the phosphoproteome. Nature Methods, 4(3):231-237.

Abstract

The ability to routinely analyze and quantitatively measure changes in protein phosphorylation on a proteome-wide scale is essential for biological and clinical research. We assessed the ability of three common phosphopeptide isolation methods (phosphoramidate chemistry (PAC), immobilized metal affinity chromatography (IMAC) and titanium dioxide) to reproducibly, specifically and comprehensively isolate phosphopeptides from complex mixtures. Phosphopeptides were isolated from aliquots of a tryptic digest of the cytosolic fraction of Drosophila melanogaster Kc167 cells and analyzed by liquid chromatography-electrospray ionization tandem mass spectrometry. Each method reproducibly isolated phosphopeptides. The methods, however, differed in their specificity of isolation and, notably, in the set of phosphopeptides isolated. The results suggest that the three methods detect different, partially overlapping segments of the phosphoproteome and that, at present, no single method is sufficient for a comprehensive phosphoproteome analysis.

Abstract

The ability to routinely analyze and quantitatively measure changes in protein phosphorylation on a proteome-wide scale is essential for biological and clinical research. We assessed the ability of three common phosphopeptide isolation methods (phosphoramidate chemistry (PAC), immobilized metal affinity chromatography (IMAC) and titanium dioxide) to reproducibly, specifically and comprehensively isolate phosphopeptides from complex mixtures. Phosphopeptides were isolated from aliquots of a tryptic digest of the cytosolic fraction of Drosophila melanogaster Kc167 cells and analyzed by liquid chromatography-electrospray ionization tandem mass spectrometry. Each method reproducibly isolated phosphopeptides. The methods, however, differed in their specificity of isolation and, notably, in the set of phosphopeptides isolated. The results suggest that the three methods detect different, partially overlapping segments of the phosphoproteome and that, at present, no single method is sufficient for a comprehensive phosphoproteome analysis.

Statistics

Citations

430 citations in Web of Science®
443 citations in Scopus®
Google Scholar™

Altmetrics

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:07 Faculty of Science > Institute of Molecular Life Sciences
Dewey Decimal Classification:570 Life sciences; biology
Language:English
Date:2007
Deposited On:24 Apr 2013 11:25
Last Modified:05 Apr 2016 16:44
Publisher:Nature Publishing Group
ISSN:1548-7091
Publisher DOI:https://doi.org/10.1038/nmeth1005
PubMed ID:17293869

Download

Full text not available from this repository.
View at publisher