Heritable variation in maternal yolk hormone transfer in a wild bird population

Tschirren, Barbara; Sendecka, Joanna; Groothuis, Ton; Gustafsson, Lars; Doligez, Blandine

Abstract: Differential reproductive investment by the mother can critically influence offspring development and phenotype, and strong selection is therefore expected to act on such maternal effects. Although a genetic basis is a prerequisite for phenotypic traits to respond to selection and thus to evolve, we still know very little about the extent of heritable variation in maternal effects in natural populations. Here, we present the first estimates of intrafemale repeatability across breeding seasons and estimates of heritability of hormone-mediated maternal effects in a wild population of collared flycatchers (Ficedula albicollis). We found that maternal yolk testosterone (T) concentrations, yolk mass, and egg mass were moderately to highly repeatable within females across years, whereas intrafemale consistency of maternal yolk androstenedione (A4) deposition was low yet statistically significant. Furthermore, maternal yolk T transfer, yolk mass, and egg mass were significantly heritable, whereas yolk A4 transfer was not. These results strongly suggest that two major maternal yolk androgens are differentially regulated by genes and the environment. Selection on heritable variation in maternal yolk T deposition has the potential to shape the rate and direction of phenotypic change in offspring traits and can thereby accelerate or impede the response to selection in natural populations.

DOI: https://doi.org/10.1086/605379

Posted at the Zurich Open Repository and Archive, University of Zurich
ZORA URL: https://doi.org/10.5167/uzh-77395
Accepted Version

Originally published at:
Tschirren, Barbara; Sendecka, Joanna; Groothuis, Ton; Gustafsson, Lars; Doligez, Blandine (2009). Heritable variation in maternal yolk hormone transfer in a wild bird population. The American Naturalist, 174(4):557-564.
DOI: https://doi.org/10.1086/605379
Heritable Variation in Maternal Yolk Hormone Transfer in a Wild Bird Population

Barbara Tschirren1*, Joanna Sendecka2, Ton G.G. Groothuis3, Lars Gustafsson2, and Blandine Doligez4

1Department of Animal Ecology, Lund University, Sölvegatan 37, 22362 Lund, Sweden; email: barbara.tschirren@zooekol.lu.se
2Department of Animal Ecology, Uppsala University, Norbyvägen 18, 75236 Uppsala, Sweden; email: joanna.sendecka@gmail.com, lars.gustafsson@ebc.uu.se
3Department of Behavioural Biology, University of Groningen, Kerklaan 30, 9750 A A Haren, The Netherlands; email: A.G.G.Groothuis@rug.nl
4CNRS; Université de Lyon, F-69000, Lyon; Université Lyon 1; Department of Biometry and Evolutionary Biology, LBBE UMR 5558, Bâtiment Gregor Mendel, 43 boulevard du 11 novembre 1918, 69622 Villeurbanne, France; email: doligez@biomserv.univ-lyon1.fr

*author for correspondence
Barbara Tschirren, Department of Animal Ecology, Lund University, Sölvegatan 37, S-223 62 Lund; E-mail: barbara.tschirren@zooekol.lu.se; Phone: +46 46 222 31 77, Fax: +46 46 222 47 16

Key words: egg quality, genetic maternal effects, genetic variation, maternal investment, steroids, transgenerational plasticity
Abstract

Differential reproductive investment by the mother can critically influence offspring development and phenotype, and strong selection is therefore expected to act upon such maternal effects. Although a genetic basis is a prerequisite for phenotypic traits to respond to selection and thus to evolve, we still know very little about the extent of heritable variation in maternal effects in natural populations. Here, we present the first estimates of intra-female repeatability across breeding seasons and estimates of heritability of hormone-mediated maternal effects in a wild population of collared flycatchers (*Ficedula albicollis*). We found that maternal yolk testosterone (T) concentrations, yolk mass and egg mass were moderately to highly repeatable within females across years, whereas intra-female consistency of maternal yolk androstenedione (A4) deposition was low, yet statistically significant. Furthermore, maternal yolk T transfer, yolk mass and egg mass were significantly heritable, whereas yolk A4 transfer was not. These results strongly suggest that two major maternal yolk androgens are differentially regulated by genes and the environment. Selection on heritable variation in maternal yolk T deposition has the potential to shape the rate and direction of phenotypic change in offspring traits, and can thereby accelerate or impede the response to selection in natural populations.
Introduction

Maternal effects occur when the phenotype of the mother or the environment she encounters modifies her offspring’s phenotype (Roach and Wulff 1987; Mousseau and Fox 1998). Such maternal effects are mediated through a diversity of pathways at various reproductive stages, from mate choice until offspring independence (Roach and Wulff 1987; Mousseau and Fox 1998). Maternal effects can make a significant contribution to variation in fitness by modifying offspring phenotype, thereby altering the genotype–phenotype relationship, and accelerating or impeding the response to selection (Kirkpatrick and Lande 1989; Schluter and Gustafsson 1993; Cheverud and Moore 1994; Wolf et al. 1998). They are therefore a very powerful evolutionary force, particularly in species where females make a considerable investment in their offspring (Reinhold 2002).

In oviparous animals, the embryonic development takes place outside of the mother’s body, which makes them excellent models for the study of prenatal maternal effects and their evolutionary consequences. Indeed, maternal investment into the egg (i.e., egg size and composition) has been found to critically influence offspring development in a variety of taxa, including birds, amphibians, reptiles and fish (e.g., McCormick 1999; Royle et al. 1999; Nager et al. 2000; Lovern and Wade 2001; Blount et al. 2002; Saino et al. 2002; Lovern and Wade 2003; Räsänen et al. 2005; Warne and Charnov 2008; Dziminski et al. 2009). In particular androgens of maternal origin, such as testosterone (T) and its precursor androstenedione (A4), which accumulate in the egg yolk during follicle maturation (Schwabl 1993; Schwabl et al. 1997), are an important component of egg quality. They have received much attention over the last few years as they are thought to be a major determinant of developmental plasticity (e.g. McCormick 1999; Lovern and Wade 2003; Groothuis et al. 2005b; Gil
Recent work has shown that maternal yolk hormones might be involved in sex-determination (Janzen et al. 1998; Bowden et al. 2000; Pike and Petrie 2003) and play an important role in prenatal development (Janzen et al. 1998; Eising et al. 2001). However, also long-lasting organizing effects of maternal yolk hormones on the progeny have been documented, including effects on postnatal growth, begging intensity, and competitiveness (reviewed in Groothuis et al. 2005b and Gil 2008). Moreover, there is accumulating evidence that hormone-mediated maternal effects modulate phenotype and behavior of offspring at adulthood, including aggressiveness and social status (Schwabl 1993; Strasser and Schwabl 2004; Eising et al. 2006), the expression of sexually selected ornaments (Strasser and Schwabl 2004; Eising et al. 2006), the response to novel stimuli (Tobler and Sandell 2007), and natal dispersal behavior (Tschirren et al. 2007).

Whereas the majority of studies have found that maternal yolk androgens are beneficial to offspring (see examples above), elevated levels of yolk androgens may also carry physiological costs either for the mother (Veiga et al. 2004; Veiga and Polo 2008; if high androgen levels in the maternal circulation are required for high androgen levels in the eggs) or the young, potentially through immunosuppressive effects of exposure to androgenic hormones (Groothuis et al. 2005a; Müller et al. 2005; Gil et al. 2006a), resulting in high parasite susceptibility (Tschirren et al. 2004) and a reduced lifespan, or through higher energy expenditure due to an increased metabolic rate (Tobler et al. 2007b, but see Eising et al. 2003). These opposing costs and benefits indicate that the optimal allocation of maternal yolk androgens into the eggs will depend on current and / or future environmental or social conditions. Indeed, it is well documented that factors such as breeding density (Schwabl 1997;
however, despite the fact that maternal plasticity in yolk androgen transfer in response to environmental variation and its adaptive value as a flexible maternal tool to adjust offspring phenotype have received much attention in the recent past, we still know very little about the within-female consistency and the genetic basis of such maternal effects. This study addresses these gaps and presents the first estimates of intra-female repeatability across breeding seasons and the first heritability estimates of maternal yolk androgen deposition in a wild bird population.

Material and Methods

Study site, study species and egg collection

The study was conducted in 2003 and from 2005 to 2007 in a population of collared flycatchers (Ficedula albicollis) breeding in nest boxes on the island of Gotland, Sweden (57º10’ N, 18º20’ E) (Gustafsson 1989; Pärt and Gustafsson 1989; Doligez et al. 2004). At the beginning of the breeding season (from end April until end May), we regularly visited nest boxes to monitor nest building and egg laying. When two eggs were found in the nest, we marked them with a non-toxic marker. On the next day, we returned to the nest box to collect the third egg on the day it was laid. The collected egg was replaced with a dummy egg to maintain the original clutch size. Collared
Flycatchers lay one egg per day, and during the study period (2003, 2005 – 2007) 94% of the females in the population laid a clutch of 5 – 7 eggs. The third egg is thus one of the middle eggs of a clutch. Intra-specific brood parasitism is not observed in the study population (Sheldon & Ellegren 1996).

We weighed the collected eggs (except for two eggs in 2003) to the nearest 0.001 g, separated the yolk from the albumen, weighed the yolk and froze it at -18°C for later hormone analysis. Mean mass of collected eggs was 1763 ± 7.5 mg (range: 1353 – 2206 mg, N = 344), mean yolk mass was 359 ± 1.7 mg (range: 250 – 442 mg, N = 344). Eggs were collected in the years 2003 (N = 79 analyzed eggs), 2005 (N = 120 analyzed eggs), 2006 (N = 108 analyzed eggs), and 2007 (N = 39 analyzed eggs). No eggs were collected in 2004. The number of eggs collected in 2007 is lower than in the other years because we specifically targeted eggs of previously sampled females and their daughters in the final year of the study.

Females were captured inside the nest box while incubating eggs. We measured their body mass and tarsus length and if they had not been banded before, they were individually marked with a numbered aluminum ring for identification. Female body condition was calculated as the residual of body mass on tarsus length. Nestlings were ringed before fledging as part of the long-term monitoring of the study population (Gustafsson 1989; Pärt and Gustafsson 1989; Doligez et al. 2004).

Yolk androgen analyses

We analyzed the concentrations of yolk androstenedione (A4) and yolk testosterone (T), the two major androgens of maternal origin in bird eggs (Schwabl 1993; Groothuis et al. 2005b), by radioimmunoassay (RIA). The yolks were thawed and homogenized with 400 µl of distilled water. Aliquots of this yolk / water emulsion
(approximately 100 mg) were taken, weighed (to the nearest 0.1 mg) and mixed with 150 µl of distilled water and 50 µl of ³H Tracer T (ca. 2000 counts per minute) to assess extraction efficiency. The samples were extracted twice with 2.5 ml of 70% diethylether / 30% petroleumether (vol : vol) and dried under a stream of nitrogen. The extracts were then re-dissolved in 1 ml 70% methanol, centrifuged and decanted. The supernatant was dried under a stream of nitrogen and re-dissolved in PBS. T and A4 concentrations were measured in duplicates using DSL (Diagnostic System Laboratories, USA) radioimmunoassay kits following the manufacturer’s protocol.

The average recovery rate was 73% (range 62 – 83%). We corrected measured androgen concentrations (pg / mg yolk) for extraction efficiency. Dilution curves confirmed reliability of extraction and assay protocols. Yolks were randomly distributed across six assays, and we ensured that eggs collected in the same year were analyzed in at least two different assays. We included duplicates of pooled collared flycatcher yolk samples in each assay to calculate intra- and inter-assay variation. Intra-assay variation was 7.5% for A4 and 6.3% for T. Inter-assay variation was 5.9% for A4 and 7.7% for T.

Statistical analyses
We collected eggs of 80 females in two different years and eggs of 4 females in three different years. Intra-female repeatability \(r \) of yolk T and yolk A4 concentrations, egg mass and yolk mass across years was calculated as
\[
\text{Intra-female variance} = s^2_{\text{Among females}}/(s^2_{\text{Within females}} + s^2_{\text{Among females}})
\]
(Lessells and Boag 1987). Standard errors were calculated following Becker (1984). In addition, we calculated the repeatability of egg size and egg composition corrected for variation among years using residual values from an ANOVA with year as a random effect.
Heritability (h^2) of maternal yolk androgen (T and A4) concentrations, egg mass and yolk mass was calculated as twice the slope (b) of the corresponding mother–daughter regression (Lynch and Walsh 1998). The standard error (SE) of h^2 was calculated as twice SE of b (Lynch and Walsh 1998). Eggs of 57 mother–daughter pairs were collected. Mean values were used if a female was sampled in more than one year. For five mothers we collected eggs of two daughters. We used mean daughter values for these mothers to ensure that each mother ($N = 52$) was included only once in the analysis. We also calculated the heritability of egg size and composition corrected for female body condition, using the residuals of a regression of egg traits on female body condition in the mother–daughter regression. Sample sizes are smaller for these analyses because some females were not measured. Some of the sampled daughters ($N = 14$) were cross-fostered shortly after hatching and were thus not raised by their biological parents. We repeated the mother–daughter regressions using this subsample of cross-fostered daughters only. We calculated Pearson’s correlation coefficients to estimate the relationship between different egg components and the relationship between egg components and female body condition. We checked the residuals of all models for normality using Shapiro-Wilk tests (all $P > 0.206$) and used the software package JMP 5 (SAS 1989-2002) for the statistical analyses.

Results

Correlates of egg size and composition

Mean yolk hormone concentration was 211.6 ± 3.25 pg / mg yolk (range: 82 – 425 pg / mg yolk) for A4 and 39.9 ± 0.77 pg / mg yolk (range: 18 – 138 pg / mg yolk) for T.
Yolk A4 and yolk T concentrations were not significantly related to egg mass (A4: \(r = 0.041, P = 0.448, T: r = 0.050, P = 0.350, N = 344 \)) or yolk mass (A4: \(r = 0.042, P = 0.443, T: r = -0.017, P = 0.755, N = 344 \)). A4 and T concentrations were positively correlated within eggs (\(r = 0.395, P < 0.001, N = 346 \)). Similarly, egg mass and yolk mass were positively correlated (\(r = 0.544, P < 0.001, N = 344 \)).

Female body condition was significantly positively associated with egg mass (\(r = 0.221, P < 0.001, N = 333 \)) and yolk mass (\(r = 0.1335, P = 0.015, N = 333 \)), significantly negatively associated with yolk A4 (\(r = -0.124, P = 0.024, N = 335 \)) and not significantly associated with yolk T (\(r = 0.066, P = 0.229, N = 335 \)). In females that have been sampled in more than one year, there was no relationship between the change in body condition and the change in yolk T (\(r = 0.108, P = 0.340, N = 80 \)), yolk A4 (\(r = -0.171, P = 0.130, N = 80 \)), egg mass (\(r = 0.104, P = 0.360, N = 80 \)) or yolk mass (\(r = -0.055, P = 0.629, N = 80 \)). The average time gap between sampling of the first and second (or third) egg of the same female in subsequent years was 1.5 ± 0.1 years (range 1 – 4). We found no significant relationship between the length of the gap and the change in yolk T, yolk A4, egg mass or yolk mass (repeated-measures ANOVA: all \(P > 0.407 \)).

Repeatability of egg size and composition

Yolk androgen concentrations, egg mass and yolk mass were all repeatable within females across breeding seasons (table 1). Yolk A4 differed significantly among years (\(F = 31.024, df = 3, 85, P < 0.001 \)), with levels in 2005 being significantly lower than in other years (contrast 2005 vs. other years: \(F = 72.022, df = 1, 85, P < 0.001 \)). Similarly, there was a significant year effect on yolk mass (\(F = 4.069, df = 3, 85, P = 0.009 \)), with yolks in 2003 being significantly heavier than in other years (contrast
2003 vs. other years: $F = 9.258$, df = 1, 85, $P = 0.003$). No significant year effect on yolk T ($F = 0.649$, df = 3, 85, $P = 0.586$) or egg mass ($F = 0.718$, df = 3, 85, $P = 0.544$) was observed. When accounting for year effects, repeatability was 0.455 ± 0.085 for yolk A4, 0.596 ± 0.069 for yolk T, 0.487 ± 0.082 for yolk mass and 0.703 ± 0.055 for egg mass (all $P < 0.001$).

Heritability of egg size and composition

Egg composition of daughters resembled that of their mothers with yolk T concentration (slope ± 1 SE; $b = 0.373 \pm 0.131$; fig. 1A), egg mass ($b = 0.421 \pm 0.151$), and yolk mass ($b = 0.484 \pm 0.163$) all being significantly heritable (table 2). Yolk A4 concentrations of mothers and daughters, however, were unrelated ($b = -0.099 \pm 0.107$; table 2, fig. 1B), and yolk A4 transfer remained non-heritable even after accounting for significant among-year variation ($b = -0.094 \pm 0.108$, $F = 0.753$, df = 1, 50, $P = 0.390$). The heritability estimates of yolk T and yolk A4 are significantly different because their 95% confidence intervals do not overlap (table 2).

The analysis of residual egg composition (accounting for female body condition) gave similar heritability estimates (yolk T: $h^2 = 0.70 \pm 0.25$, $F = 7.634$, df = 1, 41, $P = 0.009$; yolk A4: $h^2 = -0.28 \pm 0.23$, $F = 1.565$, df = 1, 41, $P = 0.218$; egg mass: $h^2 = 0.75 \pm 0.36$, $F = 4.348$, df = 1, 41, $P = 0.043$; yolk mass: $h^2 = 1.29 \pm 0.30$, $F = 17.944$, df = 1, 41, $P < 0.001$).

In the subsample of daughters that had been raised by foster parents, we observed a significant biological mother – daughter resemblance in yolk T transfer ($F = 32.771$, df = 1, 12, $P < 0.001$, fig. 1A), but not in yolk A4 transfer ($F = 0.073$, df = 1, 12, $P = 0.791$, fig. 1B), egg mass ($F = 0.131$, df = 1, 12, $P = 0.724$) or yolk mass ($F = 1.128$, df = 1, 12, $P = 0.309$).
Discussion

Despite the increasing number of studies demonstrating the important role of yolk androgens in transgenerational developmental plasticity in various taxa, we still know very little about the physiological mechanisms and the genetic basis underlying such maternal effects (Mousseau and Fox 1998; Gil 2008). The latter is of particular interest because genetic maternal effects are a heritable component of the environment provided by the mother that itself can evolve (Mousseau and Fox 1998; Wolf et al. 1998; Wolf 2003, see also Shaw and Byers 1998 for a review of genetic maternal effects in plants).

So far, very few studies (table 3) have estimated the within-female consistency of yolk hormone transfer, which can be considered an upper-bound estimate of its heritability (Lynch and Walsh 1998). We observed a high ($r = 0.60$) within-female repeatability of yolk T deposition across years, which is in accordance with previous work that estimated within-female consistency of yolk androgen transfer over a shorter time-span or in captivity (table 3). The repeatability of yolk A4 transfer across breeding seasons, however, was low ($r = 0.22$) (see also Gil et al. 2006b), which is indicative for a high environmental sensitivity of this maternal trait. Indeed, we found significant year effects on yolk A4 concentrations as well as a significant negative association between female body condition and yolk A4. No such effects were observed for yolk T. Furthermore, experimental manipulation of environmental conditions (e.g., parasitism (Tschirren et al. 2004), food abundance (Verboven et al. 2003), immune challenge of the mother (Gil et al. 2006a)) had stronger effects on the yolk A4 than the yolk T content of eggs (but see Reed and Vleck 2001; Groothuis and Schwabl 2002; Pilz and Smith 2004). The finding that repeatability of A4 was
substantially higher when correcting for variation among years indicates that although females deposit variable amounts of A4 into the eggs depending on environmental conditions, they deposit similar amounts relative to each other, showing an interesting interaction between plasticity on the one hand and individual consistency on the other.

Consistent with the differences in intra-female repeatability across breeding seasons, we observed differences in the mother-daughter resemblance of yolk T and yolk A4 transfer. To put the heritability estimates of yolk androgen deposition into perspective, we estimated the heritability of egg mass and yolk mass, which are considered to be highly heritable maternal traits (reviewed in Christians 2002). The heritability of yolk T ($h^2 = 0.75$) was high and comparable to the heritability of egg mass ($h^2 = 0.84$) and yolk mass ($h^2 = 0.97$) in our study as well as in other species (Christians 2002). This finding adds to the evidence for a genetic basis of prenatal maternal effects, which is well established for livestock (e.g. Meyer 1997; Dodenhoff et al. 1999; M oce et al. 2004) and plants (reviewed in Shaw and Byers 1998), but still scarce for free-living animals. Yolk A4 deposition, on the other hand, was not heritable. These contrasting heritability patterns are in accordance with the findings of a selection experiment in Japanese quails (Coturnix coturnix japonica) where artificial selection for divergent social behavior resulted in a correlated response in yolk T levels, but not in yolk A4 (Gil and Faure 2007), corroborating our finding that yolk A4 and yolk T are differently influenced by genes and the environment. However, selection for exploration behavior in great tits (Parus major) resulted in an equally strong effect on both androgens (Groothuis et al. 2008).

Measuring heritability in a non-experimental set-up can be problematic because offspring might tend to experience similar environmental conditions as their parents, thus inflating the heritability estimates of measured traits (M erilä and
Indeed, egg mass and yolk mass were no longer heritable when considering only females that had been cross-fostered shortly after birth. Although sample sizes of cross-fostered females are small, it suggests that common environmental effects might at least partly contribute the often observed mother–daughter resemblance in egg mass (reviewed in Christians 2002), and that the heritability of egg mass might thus in some cases be overestimated.

For yolk T deposition, however, a significant resemblance between daughters and their biological mothers was also found in the subsample of cross-fostered birds. This suggests that common environmental effects are less likely as an explanation for the significant heritability of maternal T transfer. However, we cannot exclude the interesting alternative that early maternal effects (especially the yolk T content of an egg) determine the daughters’ deposition of yolk T later in life. Such a maternal priming effect could lead to a strong mother–daughter resemblance in yolk T deposition as observed in our study. Prenatal exposure to androgens is known to have organizing effects on adult physiology and exposure to elevated levels of maternal T might induce a transgenerational effect by influencing the Hypothalamic-Pituitary-Gonadal axis. Indeed, intergenerational effects by DNA methylation of genes coding for hormone receptors are well known in rats (Weaver et al. 2004; Champagne et al. 2006). Only an experimental manipulation of yolk T, and the subsequent analysis of the yolk T content of the daughters’ eggs will allow us to distinguish between a genetic determination of yolk T deposition and a maternal priming effect. Importantly, however, both pathways will lead to consistent variation in maternal yolk T deposition among families, and thus have similar evolutionary implications.

In conclusion, we present direct evidence for consistent, heritable variation in...
maternal yolk testosterone transfer in a wild bird population, and clear differences in
the repeatability and heritability of different hormonal components of an egg.
Importantly, a high consistency of yolk T deposition within females and between
mothers and daughters does not preclude a plastic and adaptive female response to
environmental variation, but in addition, it opens up the opportunity for hormone-
mediated maternal effects to respond to selection, and thus to evolve. Such indirect
genetic effects can modify or accelerate phenotypic change in natural populations, and
might thereby play an important role in evolutionary processes such as parent-
offspring coevolution (Kölliker et al. 2000; Kölliker et al. 2005; Müller et al. 2007;
Tschirren and Richner 2008), the evolution of behavioral syndromes (Dingemanse et
al. 2003; van Oers et al. 2004; Groothuis and Carere 2005; Gil and Faure 2007;
Tobler and Sandell 2007; Groothuis et al. 2008), and/or dispersal behavior and the
colonization of new environments (Hahn et al. 2005; Duckworth and Badyaev 2007;
Tschirren et al. 2007) in a range of taxa. We hope that by elucidating the heritable
basis of yolk hormone deposition, this study will bring us closer to an understanding
of the evolution of hormone-mediated maternal effects, the patterns that shape their
current expression both within and among species, and their consequences for the
direction and speed of phenotypic change in natural populations.
Acknowledgements

We thank the numerous field assistants for help with data collection, Bonnie de Vries for advice during the hormone analyses, Erik Postma for discussion, Damien Doligez for technical help and two anonymous referees for very constructive comments on the manuscript. The study was financially supported by the Janggen-Pöhn Stiftung, the Association for the Study of Animal Behaviour (ASAB), the Basler Stiftung für Biologische Forschung, the Australian Research Council (DP0879313), the Swiss National Science Foundation (PA 00A3-121466; all to B.T.), the French National Research Agency (ANR-06-JCJC-0082), the French National Centre for Scientific Research (CNRS PICS n°3054), the British Ecological Society (SEPG 2005-30011004, all to B.D.), the Helge Ax:son Johnsons Stiftelse and the Zoologiska Stiftelse (both to J.S). We obtained a licence for collecting eggs from the National Board for Laboratory Animals, Stockholm, Sweden and a licence for catching, ringing and handling birds from the Ringing Centre of the Swedish National Museum of Natural History, Stockholm, Sweden.
References

availability affects the maternal transfer of androgens and antibodies into eggs of a colonial seabird. Journal of Evolutionary Biology 20:874-880.

Gil, D., G. Leboucher, A. Lacroix, R. Cue, and M. Kreutzer. 2004. Female canaries produce eggs with greater amount of testosterone when exposed to preferred male song. Hormones and Behavior 45:64-70.

Table 1. Repeatability of egg mass and composition

<table>
<thead>
<tr>
<th>Maternal effect</th>
<th>r ± 1 SE</th>
<th>F</th>
<th>df</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>Yolk T</td>
<td>0.596 ± 0.069</td>
<td>4.018</td>
<td>83, 88</td>
<td>< 0.001</td>
</tr>
<tr>
<td>Yolk A4</td>
<td>0.217 ± 0.102</td>
<td>1.567</td>
<td>83, 88</td>
<td>0.019</td>
</tr>
<tr>
<td>Egg mass</td>
<td>0.706 ± 0.054</td>
<td>5.926</td>
<td>83, 88</td>
<td>< 0.001</td>
</tr>
<tr>
<td>Yolk mass</td>
<td>0.477 ± 0.083</td>
<td>2.869</td>
<td>83, 88</td>
<td>< 0.001</td>
</tr>
</tbody>
</table>

Note: Intra-female repeatability (r) of yolk T concentration, yolk A4 concentration, egg mass and yolk mass across breeding seasons. 80 females have been sampled in two different years and 4 females have been sampled in three different years.
Table 2. Heritability of egg mass and composition

<table>
<thead>
<tr>
<th>Maternal effect</th>
<th>h^2</th>
<th>95% CI</th>
<th>F</th>
<th>df</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>Yolk T</td>
<td>0.746</td>
<td>0.23 – 1.26</td>
<td>8.088</td>
<td>1, 50</td>
<td>0.006</td>
</tr>
<tr>
<td>Yolk A4</td>
<td>-0.197</td>
<td>-0.62 – 0.22</td>
<td>0.844</td>
<td>1, 50</td>
<td>0.363</td>
</tr>
<tr>
<td>Egg mass</td>
<td>0.842</td>
<td>0.25 – 1.43</td>
<td>7.764</td>
<td>1, 50</td>
<td>0.008</td>
</tr>
<tr>
<td>Yolk mass</td>
<td>0.968</td>
<td>0.33 – 1.61</td>
<td>8.877</td>
<td>1, 50</td>
<td>0.004</td>
</tr>
</tbody>
</table>

Note: Heritability estimates (h^2) and 95% confidence intervals of yolk T concentration, yolk A4 concentration, egg mass and yolk mass. N = 52 mother – daughter pairs.
Table 3. Published repeatability estimates of maternal yolk hormone transfer

<table>
<thead>
<tr>
<th>Species</th>
<th>Yolk hormone</th>
<th>r</th>
<th>N</th>
<th>Sampling interval</th>
<th>Ref.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ficedula hypoleuca (wild)</td>
<td>yolk T</td>
<td>0.56</td>
<td>16</td>
<td>< 2 weeks</td>
<td>[1]</td>
</tr>
<tr>
<td>Sturnus vulgaris (captive)</td>
<td>yolk T</td>
<td>0.50</td>
<td>12</td>
<td>1 year</td>
<td>[2]</td>
</tr>
<tr>
<td>Ficedula hypoleuca (wild)</td>
<td>yolk A4</td>
<td>0.58</td>
<td>16</td>
<td>< 2 weeks</td>
<td>[1]</td>
</tr>
<tr>
<td>Hirundo rustica (wild)</td>
<td>yolk A4</td>
<td>0.22</td>
<td>64</td>
<td>> 4 weeks</td>
<td>[3]</td>
</tr>
<tr>
<td>Sturnus vulgaris (captive)</td>
<td>yolk A4</td>
<td>0.43</td>
<td>14</td>
<td>1 year</td>
<td>[2]</td>
</tr>
</tbody>
</table>

Figure legend

Figure 1. Comparison of yolk androgen concentrations in the eggs of mothers and daughters. A) Yolk testosterone (T), and B) yolk androstenedione (A4) concentrations. Black dots represent daughters raised by foster parents (N = 14), open dots represent daughters raised by their biological parents (N = 43). The mother – daughter resemblance was significant for yolk T, both overall and when considering only cross-fostered daughters. No significant relationship between mothers and daughters was observed for yolk A4.