Header

UZH-Logo

Maintenance Infos

Comparison of temperature processing methods for monitoring focused ultrasound ablation in the brain


Rieke, Viola; Instrella, Ron; Rosenberg, Jarrett; Grissom, William; Werner, Beat; Martin, Ernst; Pauly, Kim Butts (2013). Comparison of temperature processing methods for monitoring focused ultrasound ablation in the brain. Journal of Magnetic Resonance Imaging (JMRI), 38(6):1462-1471.

Abstract

PURPOSE: To investigate the performance of different reconstruction methods for monitoring temperature changes during transcranial magnetic resonance imaging (MRI)-guided focused ultrasound (MRgFUS). MATERIALS AND METHODS: Four different temperature reconstruction methods were compared in volunteers (without heating) and patients undergoing transcranial MRgFUS: single baseline subtraction, multibaseline subtraction, hybrid single baseline/referenceless reconstruction, and hybrid multibaseline/referenceless reconstruction. Absolute temperature error and temporal temperature uncertainty of the different reconstruction methods were analyzed and compared. RESULTS: Absolute temperature errors and temporal temperature uncertainty were highest with single baseline subtraction and lowest with hybrid multibaseline/referenceless reconstruction in all areas of the brain. Pulsation of the brain and susceptibility changes from tongue motion or swallowing caused substantial temperature errors when single or multibaseline subtraction was used, which were much reduced when the referenceless component was added to the reconstruction. CONCLUSION: Hybrid multibaseline/referenceless thermometry accurately measures temperature changes in the brain with fewer artifacts and errors due to motion than pure baseline subtraction methods.

Abstract

PURPOSE: To investigate the performance of different reconstruction methods for monitoring temperature changes during transcranial magnetic resonance imaging (MRI)-guided focused ultrasound (MRgFUS). MATERIALS AND METHODS: Four different temperature reconstruction methods were compared in volunteers (without heating) and patients undergoing transcranial MRgFUS: single baseline subtraction, multibaseline subtraction, hybrid single baseline/referenceless reconstruction, and hybrid multibaseline/referenceless reconstruction. Absolute temperature error and temporal temperature uncertainty of the different reconstruction methods were analyzed and compared. RESULTS: Absolute temperature errors and temporal temperature uncertainty were highest with single baseline subtraction and lowest with hybrid multibaseline/referenceless reconstruction in all areas of the brain. Pulsation of the brain and susceptibility changes from tongue motion or swallowing caused substantial temperature errors when single or multibaseline subtraction was used, which were much reduced when the referenceless component was added to the reconstruction. CONCLUSION: Hybrid multibaseline/referenceless thermometry accurately measures temperature changes in the brain with fewer artifacts and errors due to motion than pure baseline subtraction methods.

Statistics

Citations

10 citations in Web of Science®
12 citations in Scopus®
Google Scholar™

Altmetrics

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:04 Faculty of Medicine > University Children's Hospital Zurich > Medical Clinic
Dewey Decimal Classification:610 Medicine & health
Language:English
Date:4 April 2013
Deposited On:25 Apr 2013 08:37
Last Modified:05 Apr 2016 16:46
Publisher:Wiley-Blackwell
ISSN:1053-1807
Publisher DOI:https://doi.org/10.1002/jmri.24117
PubMed ID:23559437

Download

Full text not available from this repository.
View at publisher