Header

UZH-Logo

Maintenance Infos

Neurocognition of auditory sentence comprehension: event related fMRI reveals sensitivity to syntactic violations and task demands


Meyer, Martin; Friederici, Angela D; von Cramon, D Yves (2000). Neurocognition of auditory sentence comprehension: event related fMRI reveals sensitivity to syntactic violations and task demands. Cognitive Brain Research, 9(1):19-33.

Abstract

The present study investigates the sensitivity of distinct brain regions to the syntactic processing of running speech. Experimental conditions varied the grammaticality of sentence types (correct vs. incorrect). Moreover, two different groups of subjects listened to the same sentence material, but followed two different task instructions. All participants were asked to listen to the auditory stimuli and to perform in a grammaticality judgment-task, whereas only half of the subjects were instructed to additionally repair incorrect sentences covertly. Significantly increased brain responses occurred in several left temporal areas as a function of sentences’ grammaticality, particularly, in the ‘pure’ judgment-group. Spatial extent as well as the strength of focal brain activation changed as a function of grammaticality and task demand. A generally enhanced pattern of local blood supply to the right peri-sylvian cortex could be observed when individuals additionally realized the repair-task. In particular, the right inferior frontal gyrus (pars opercularis and pars triangularis) and the right temporal transverse gyrus (Heschl's gyrus) were more strongly affected by the repair-task demand. In contrast, an anterior portion of the superior temporal gyrus (planum polare) displayed increased activation bilaterally. Although left hemisphere activation varied clearly as a function of a sentence's grammaticality, the present findings demonstrate an involvement of the right peri-sylvian cortex, in particular, when task demands explicitly require an on-line repair. The results as a whole suggest a reconsideration of the notion that auditory language comprehension is restricted to the left hemisphere. The underlying mechanisms and the respective roles of both the left and the right hemisphere during speech processing are discussed.

Abstract

The present study investigates the sensitivity of distinct brain regions to the syntactic processing of running speech. Experimental conditions varied the grammaticality of sentence types (correct vs. incorrect). Moreover, two different groups of subjects listened to the same sentence material, but followed two different task instructions. All participants were asked to listen to the auditory stimuli and to perform in a grammaticality judgment-task, whereas only half of the subjects were instructed to additionally repair incorrect sentences covertly. Significantly increased brain responses occurred in several left temporal areas as a function of sentences’ grammaticality, particularly, in the ‘pure’ judgment-group. Spatial extent as well as the strength of focal brain activation changed as a function of grammaticality and task demand. A generally enhanced pattern of local blood supply to the right peri-sylvian cortex could be observed when individuals additionally realized the repair-task. In particular, the right inferior frontal gyrus (pars opercularis and pars triangularis) and the right temporal transverse gyrus (Heschl's gyrus) were more strongly affected by the repair-task demand. In contrast, an anterior portion of the superior temporal gyrus (planum polare) displayed increased activation bilaterally. Although left hemisphere activation varied clearly as a function of a sentence's grammaticality, the present findings demonstrate an involvement of the right peri-sylvian cortex, in particular, when task demands explicitly require an on-line repair. The results as a whole suggest a reconsideration of the notion that auditory language comprehension is restricted to the left hemisphere. The underlying mechanisms and the respective roles of both the left and the right hemisphere during speech processing are discussed.

Statistics

Citations

164 citations in Web of Science®
163 citations in Scopus®
Google Scholar™

Altmetrics

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:06 Faculty of Arts > Institute of Psychology
Dewey Decimal Classification:150 Psychology
Language:English
Date:2000
Deposited On:30 Apr 2013 09:21
Last Modified:07 Dec 2017 21:07
Publisher:Elsevier
ISSN:0926-6410
Publisher DOI:https://doi.org/10.1016/S0926-6410(99)00039-7

Download

Full text not available from this repository.
View at publisher