Header

UZH-Logo

Maintenance Infos

Mutagenesis of human DNA polymerase lambda: essential roles of Tyr505 and Phe506 for both DNA polymerase and terminal transferase activities


Shevelev, I V; Blanca, G; Villani, G; Ramadan, K; Spadari, S; Hübscher, U; Maga, G (2003). Mutagenesis of human DNA polymerase lambda: essential roles of Tyr505 and Phe506 for both DNA polymerase and terminal transferase activities. Nucleic Acids Research, 31(23):6916-6925.

Abstract

DNA polymerase (pol) lambda is homologous to pol beta and has intrinsic polymerase and terminal transferase activities. However, nothing is known about the amino acid residues involved in these activities. In order to precisely define the nucleotide-binding site of human pol lambda, we have mutagenised two amino acids, Tyr505 and the neighbouring Phe506, which were predicted by structural homology modelling to correspond to the Tyr271 and Phe272 residues of pol beta, which are involved in nucleotide binding. Our analysis demonstrated that pol lambda Phe506Arg/Gly mutants possess very low polymerase and terminal transferase activities as well as greatly reduced abilities for processive DNA synthesis and for carrying on translesion synthesis past an abasic site. The Tyr505Ala mutant, on the other hand, showed an altered nucleotide binding selectivity to perform the terminal transferase activity. Our results suggest the existence of a common nucleotide-binding site for the polymerase and terminal transferase activities of pol lambda, as well as distinct roles of the amino acids Tyr505 and Phe506 in these two catalytic functions.

Abstract

DNA polymerase (pol) lambda is homologous to pol beta and has intrinsic polymerase and terminal transferase activities. However, nothing is known about the amino acid residues involved in these activities. In order to precisely define the nucleotide-binding site of human pol lambda, we have mutagenised two amino acids, Tyr505 and the neighbouring Phe506, which were predicted by structural homology modelling to correspond to the Tyr271 and Phe272 residues of pol beta, which are involved in nucleotide binding. Our analysis demonstrated that pol lambda Phe506Arg/Gly mutants possess very low polymerase and terminal transferase activities as well as greatly reduced abilities for processive DNA synthesis and for carrying on translesion synthesis past an abasic site. The Tyr505Ala mutant, on the other hand, showed an altered nucleotide binding selectivity to perform the terminal transferase activity. Our results suggest the existence of a common nucleotide-binding site for the polymerase and terminal transferase activities of pol lambda, as well as distinct roles of the amino acids Tyr505 and Phe506 in these two catalytic functions.

Statistics

Citations

26 citations in Web of Science®
22 citations in Scopus®
Google Scholar™

Altmetrics

Downloads

54 downloads since deposited on 11 Feb 2008
7 downloads since 12 months
Detailed statistics

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:05 Vetsuisse Faculty > Department of Molecular Mechanisms of Disease
07 Faculty of Science > Department of Molecular Mechanisms of Disease
Dewey Decimal Classification:570 Life sciences; biology
Language:English
Date:1 December 2003
Deposited On:11 Feb 2008 12:18
Last Modified:03 Aug 2017 14:45
Publisher:Oxford University Press
ISSN:0305-1048
Free access at:PubMed ID. An embargo period may apply.
Publisher DOI:https://doi.org/10.1093/nar/gkg896
PubMed ID:14627824

Download

Download PDF  'Mutagenesis of human DNA polymerase lambda: essential roles of Tyr505 and Phe506 for both DNA polymerase and terminal transferase activities'.
Preview
Filetype: PDF
Size: 369kB
View at publisher