Header

UZH-Logo

Maintenance Infos

The encoding of vowels and temporal speech cues in the auditory cortex of professional musicians: An EEG study


Kühnis, Jürg; Elmer, Stefan; Meyer, Martin; Jäncke, Lutz (2013). The encoding of vowels and temporal speech cues in the auditory cortex of professional musicians: An EEG study. Neuropsychologia, 51(8):1608-1618.

Abstract

Here, we applied a multi-feature mismatch negativity (MMN) paradigm in order to systematically investigate the neuronal representation of vowels and temporally manipulated CV syllables in a homogeneous sample of string players and non-musicians. Based on previous work indicating an increased sensitivity of the musicians' auditory system, we expected to find that musically trained subjects will elicit increased MMN amplitudes in response to temporal variations in CV syllables, namely voice-onset time (VOT) and duration. In addition, since different vowels are principally distinguished by means of frequency information and musicians are superior in extracting tonal (and thus frequency) information from an acoustic stream, we also expected to provide evidence for an increased auditory representation of vowels in the experts. In line with our hypothesis, we could show that musicians are not only advantaged in the pre-attentive encoding of temporal speech cues, but most notably also of processing vowels. Additional "just noticeable difference" measurements suggested that the musicians' perceptual advantage in encoding speech sounds was more likely driven by the generic constitutional properties of a highly trained auditory system, rather than by its specialisation for speech representations per se. These results shed light on the origin of the often reported advantage of musicians in processing a variety of speech sounds.

Abstract

Here, we applied a multi-feature mismatch negativity (MMN) paradigm in order to systematically investigate the neuronal representation of vowels and temporally manipulated CV syllables in a homogeneous sample of string players and non-musicians. Based on previous work indicating an increased sensitivity of the musicians' auditory system, we expected to find that musically trained subjects will elicit increased MMN amplitudes in response to temporal variations in CV syllables, namely voice-onset time (VOT) and duration. In addition, since different vowels are principally distinguished by means of frequency information and musicians are superior in extracting tonal (and thus frequency) information from an acoustic stream, we also expected to provide evidence for an increased auditory representation of vowels in the experts. In line with our hypothesis, we could show that musicians are not only advantaged in the pre-attentive encoding of temporal speech cues, but most notably also of processing vowels. Additional "just noticeable difference" measurements suggested that the musicians' perceptual advantage in encoding speech sounds was more likely driven by the generic constitutional properties of a highly trained auditory system, rather than by its specialisation for speech representations per se. These results shed light on the origin of the often reported advantage of musicians in processing a variety of speech sounds.

Statistics

Citations

24 citations in Web of Science®
25 citations in Scopus®
Google Scholar™

Altmetrics

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:06 Faculty of Arts > Institute of Psychology
Dewey Decimal Classification:150 Psychology
Language:English
Date:2013
Deposited On:22 May 2013 09:36
Last Modified:05 Apr 2016 16:47
Publisher:Elsevier
ISSN:0028-3932
Publisher DOI:https://doi.org/10.1016/j.neuropsychologia.2013.04.007
PubMed ID:23664833

Download

Full text not available from this repository.
View at publisher

TrendTerms

TrendTerms displays relevant terms of the abstract of this publication and related documents on a map. The terms and their relations were extracted from ZORA using word statistics. Their timelines are taken from ZORA as well. The bubble size of a term is proportional to the number of documents where the term occurs. Red, orange, yellow and green colors are used for terms that occur in the current document; red indicates high interlinkedness of a term with other terms, orange, yellow and green decreasing interlinkedness. Blue is used for terms that have a relation with the terms in this document, but occur in other documents.
You can navigate and zoom the map. Mouse-hovering a term displays its timeline, clicking it yields the associated documents.

Author Collaborations