Header

UZH-Logo

Maintenance Infos

Molecular basis for the enantioselectivity of HIV-1 reverse transcriptase: role of the 3'-hydroxyl group of the L-(beta)-ribose in chiral discrimination between D- and L-enantiomers of deoxy- and dideoxy-nucleoside triphosphate analogs.


Maga, G; Amacker, M; Hübscher, U; Gosselin, G; Imbach, J L; Mathé, C; Faraj, A; Sommadossi, J P; Spadari, S (1999). Molecular basis for the enantioselectivity of HIV-1 reverse transcriptase: role of the 3'-hydroxyl group of the L-(beta)-ribose in chiral discrimination between D- and L-enantiomers of deoxy- and dideoxy-nucleoside triphosphate analogs. Nucleic Acids Research, 27(4):972-978.

Abstract

In order to identify the basis for the relaxed enantio-selectivity of human immunodeficiency virus type 1 (HIV-1) reverse transcriptase (RT) and to evaluate possible cross-resistance patterns between L-nucleoside-, D-nucleoside- and non-nucleoside RT inhibitors, to be utilised in anti-HIV-1 combination therapy, we applied an in vitro approach based on the utilisation of six recom-binant HIV-1 RT mutants containing single amino acid substitutions known to confer Nevirapine resistance in treated patients. The mutants were compared on different RNA/DNA and DNA/DNA substrates to the wild type (wt) enzyme for their sensitivity towards inhibition by the D- and L-enantiomers of 2'-deoxy- and 2',3'-dideoxynucleoside triphosphate analogs. The results showed that the 3'-hydroxyl group of the L-(beta)-2'-deoxyribose moiety caused an unfavourable steric hindrance with critic residues in the HIV-1 RT active site and this steric barrier was increased by the Y181I mutation. Elimination of the 3'-hydroxyl group removed this hindrance and significantly improved binding to the HIV-1 RT wt and to the mutants. These results demonstrate the critical role of both the tyrosine 181 of RT and the 3'-position of the sugar ring, in chiral discrimination between D- and L-nucleoside triphosphates. Moreover, they provide an important rationale for the combination of D- and L-(beta)-dideoxynucleoside analogs with non-nucleoside RT inhibitors in anti-HIV chemotherapy, since non-nucleosideinhibitors resistance mutations did not confer cross-resistance to dideoxynucleoside analogs.

Abstract

In order to identify the basis for the relaxed enantio-selectivity of human immunodeficiency virus type 1 (HIV-1) reverse transcriptase (RT) and to evaluate possible cross-resistance patterns between L-nucleoside-, D-nucleoside- and non-nucleoside RT inhibitors, to be utilised in anti-HIV-1 combination therapy, we applied an in vitro approach based on the utilisation of six recom-binant HIV-1 RT mutants containing single amino acid substitutions known to confer Nevirapine resistance in treated patients. The mutants were compared on different RNA/DNA and DNA/DNA substrates to the wild type (wt) enzyme for their sensitivity towards inhibition by the D- and L-enantiomers of 2'-deoxy- and 2',3'-dideoxynucleoside triphosphate analogs. The results showed that the 3'-hydroxyl group of the L-(beta)-2'-deoxyribose moiety caused an unfavourable steric hindrance with critic residues in the HIV-1 RT active site and this steric barrier was increased by the Y181I mutation. Elimination of the 3'-hydroxyl group removed this hindrance and significantly improved binding to the HIV-1 RT wt and to the mutants. These results demonstrate the critical role of both the tyrosine 181 of RT and the 3'-position of the sugar ring, in chiral discrimination between D- and L-nucleoside triphosphates. Moreover, they provide an important rationale for the combination of D- and L-(beta)-dideoxynucleoside analogs with non-nucleoside RT inhibitors in anti-HIV chemotherapy, since non-nucleosideinhibitors resistance mutations did not confer cross-resistance to dideoxynucleoside analogs.

Statistics

Citations

14 citations in Web of Science®
14 citations in Scopus®
Google Scholar™

Altmetrics

Downloads

45 downloads since deposited on 11 Feb 2008
5 downloads since 12 months
Detailed statistics

Additional indexing

Item Type:Journal Article, refereed
Communities & Collections:05 Vetsuisse Faculty > Department of Molecular Mechanisms of Disease
07 Faculty of Science > Department of Molecular Mechanisms of Disease
Dewey Decimal Classification:570 Life sciences; biology
Language:English
Date:15 February 1999
Deposited On:11 Feb 2008 12:18
Last Modified:03 Aug 2017 14:45
Publisher:Oxford University Press
ISSN:0305-1048
Free access at:PubMed ID. An embargo period may apply.
Publisher DOI:https://doi.org/10.1093/nar/27.4.972
PubMed ID:9927728

Download

Download PDF  'Molecular basis for the enantioselectivity of HIV-1 reverse transcriptase: role of the 3'-hydroxyl group of the L-(beta)-ribose in chiral discrimination between D- and L-enantiomers of deoxy- and dideoxy-nucleoside triphosphate analogs.'.
Preview
Filetype: PDF
Size: 134kB
View at publisher