Header

UZH-Logo

Maintenance Infos

A New, Modular Mass Calibrant for High-Mass MALDI-MS


Weidmann, Simon; Barylyuk, Konstantin; Nespovitaya, Nadezhda; Mädler, Stefanie; Zenobi, Renato (2013). A New, Modular Mass Calibrant for High-Mass MALDI-MS. Analytical Chemistry, 85:3425-3432.

Abstract

The application of matrix-assisted laser desorption/ionization mass spectrometry (MALDIMS) for the analysis of high-mass proteins requires suitable calibration standards at high m/z ratios. Several possible candidates were investigated, and concatenated polyproteins based on recombinantly expressed maltodextrin-binding protein (MBP) are shown here to be well suited for this purpose. Introduction of two specific recognition sites into the primary sequence of the polyprotein allows for the selective cleavage of MBP3 into MBP and MBP2. Moreover,
these MBP2 and MBP3 oligomers can be dimerized specifically, such that generation of MPB4 and MBP6 is possible as well. With the set of calibrants presented here, the m/z range of 40–400 kDa is covered. Since all calibrants consist of the same species and differ only in mass, the ionization efficiency is expected to be similar. However, equimolar mixtures of these proteins did not yield equal signal intensities on a detector specifically designed for detecting high-mass molecules.

Abstract

The application of matrix-assisted laser desorption/ionization mass spectrometry (MALDIMS) for the analysis of high-mass proteins requires suitable calibration standards at high m/z ratios. Several possible candidates were investigated, and concatenated polyproteins based on recombinantly expressed maltodextrin-binding protein (MBP) are shown here to be well suited for this purpose. Introduction of two specific recognition sites into the primary sequence of the polyprotein allows for the selective cleavage of MBP3 into MBP and MBP2. Moreover,
these MBP2 and MBP3 oligomers can be dimerized specifically, such that generation of MPB4 and MBP6 is possible as well. With the set of calibrants presented here, the m/z range of 40–400 kDa is covered. Since all calibrants consist of the same species and differ only in mass, the ionization efficiency is expected to be similar. However, equimolar mixtures of these proteins did not yield equal signal intensities on a detector specifically designed for detecting high-mass molecules.

Statistics

Citations

7 citations in Web of Science®
5 citations in Scopus®
Google Scholar™

Altmetrics

Downloads

40 downloads since deposited on 24 Jun 2013
7 downloads since 12 months
Detailed statistics

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:Special Collections > SystemsX.ch
Special Collections > SystemsX.ch > Research, Technology and Development Projects > CINA
Special Collections > SystemsX.ch > Research, Technology and Development Projects
Dewey Decimal Classification:570 Life sciences; biology
Language:English
Date:February 2013
Deposited On:24 Jun 2013 08:48
Last Modified:05 Apr 2016 16:49
Publisher:American Chemical Society
ISSN:0003-2700
Publisher DOI:https://doi.org/10.1021/ac400129h

Download

Preview Icon on Download
Preview
Filetype: PDF
Size: 68MB
View at publisher

TrendTerms

TrendTerms displays relevant terms of the abstract of this publication and related documents on a map. The terms and their relations were extracted from ZORA using word statistics. Their timelines are taken from ZORA as well. The bubble size of a term is proportional to the number of documents where the term occurs. Red, orange, yellow and green colors are used for terms that occur in the current document; red indicates high interlinkedness of a term with other terms, orange, yellow and green decreasing interlinkedness. Blue is used for terms that have a relation with the terms in this document, but occur in other documents.
You can navigate and zoom the map. Mouse-hovering a term displays its timeline, clicking it yields the associated documents.

Author Collaborations