Header

UZH-Logo

Maintenance Infos

Site occupancy models in the analysis of environmental DNA presence/absence surveys: a case study of an emerging amphibian pathogen


Schmidt, Benedikt R; Kéry, Marc; Ursenbacher, Sylvain; Hyman, Oliver J; Collins, James P (2013). Site occupancy models in the analysis of environmental DNA presence/absence surveys: a case study of an emerging amphibian pathogen. Methods in Ecology and Evolution, 4(7):646-653.

Abstract

The use of environmental DNA (eDNA) to detect species in aquatic environments such as ponds and streams is a powerful new technique with many benefits. However, species detection in eDNA-based surveys is likely to be imperfect, which can lead to underestimation of the distribution of a species.
Site occupancy models account for imperfect detection and can be used to estimate the proportion of sites where a species occurs from presence/absence survey data, making them ideal for the analysis of eDNA-based surveys. Imperfect detection can result from failure to detect the species during field work (e.g. by water samples) or during laboratory analysis (e.g. by PCR).
To demonstrate the utility of site occupancy models for eDNA surveys, we reanalysed a data set estimating the occurrence of the amphibian chytrid fungus Batrachochytrium dendrobatidis using eDNA. Our reanalysis showed that the previous estimation of species occurrence was low by 5–10%. Detection probability was best explained by an index of the number of hosts (frogs) in ponds.
Per-visit availability probability in water samples was estimated at 0·45 (95% CRI 0·32, 0·58) and per-PCR detection probability at 0·85 (95% CRI 0·74, 0·94), and six water samples from a pond were necessary for a cumulative detection probability >95%. A simulation study showed that when using site occupancy analysis, researchers need many fewer samples to reliably estimate presence and absence of species than without use of site occupancy modelling.
Our analyses demonstrate the benefits of site occupancy models as a simple and powerful tool to estimate detection and site occupancy (species prevalence) probabilities despite imperfect detection. As species detection from eDNA becomes more common, adoption of appropriate statistical methods, such as site occupancy models, will become crucial to ensure that reliable inferences are made from eDNA-based surveys.

Abstract

The use of environmental DNA (eDNA) to detect species in aquatic environments such as ponds and streams is a powerful new technique with many benefits. However, species detection in eDNA-based surveys is likely to be imperfect, which can lead to underestimation of the distribution of a species.
Site occupancy models account for imperfect detection and can be used to estimate the proportion of sites where a species occurs from presence/absence survey data, making them ideal for the analysis of eDNA-based surveys. Imperfect detection can result from failure to detect the species during field work (e.g. by water samples) or during laboratory analysis (e.g. by PCR).
To demonstrate the utility of site occupancy models for eDNA surveys, we reanalysed a data set estimating the occurrence of the amphibian chytrid fungus Batrachochytrium dendrobatidis using eDNA. Our reanalysis showed that the previous estimation of species occurrence was low by 5–10%. Detection probability was best explained by an index of the number of hosts (frogs) in ponds.
Per-visit availability probability in water samples was estimated at 0·45 (95% CRI 0·32, 0·58) and per-PCR detection probability at 0·85 (95% CRI 0·74, 0·94), and six water samples from a pond were necessary for a cumulative detection probability >95%. A simulation study showed that when using site occupancy analysis, researchers need many fewer samples to reliably estimate presence and absence of species than without use of site occupancy modelling.
Our analyses demonstrate the benefits of site occupancy models as a simple and powerful tool to estimate detection and site occupancy (species prevalence) probabilities despite imperfect detection. As species detection from eDNA becomes more common, adoption of appropriate statistical methods, such as site occupancy models, will become crucial to ensure that reliable inferences are made from eDNA-based surveys.

Statistics

Citations

54 citations in Web of Science®
46 citations in Scopus®
Google Scholar™

Altmetrics

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:07 Faculty of Science > Institute of Evolutionary Biology and Environmental Studies
Dewey Decimal Classification:570 Life sciences; biology
590 Animals (Zoology)
Uncontrolled Keywords:environmental DNA, sampling, monitoring, chytridiomycosis
Language:English
Date:2013
Deposited On:04 Jul 2013 08:57
Last Modified:05 Apr 2016 16:51
Publisher:Wiley-Blackwell
ISSN:2041-2096
Publisher DOI:https://doi.org/10.1111/2041-210X.12052

Download

Full text not available from this repository.
View at publisher

TrendTerms

TrendTerms displays relevant terms of the abstract of this publication and related documents on a map. The terms and their relations were extracted from ZORA using word statistics. Their timelines are taken from ZORA as well. The bubble size of a term is proportional to the number of documents where the term occurs. Red, orange, yellow and green colors are used for terms that occur in the current document; red indicates high interlinkedness of a term with other terms, orange, yellow and green decreasing interlinkedness. Blue is used for terms that have a relation with the terms in this document, but occur in other documents.
You can navigate and zoom the map. Mouse-hovering a term displays its timeline, clicking it yields the associated documents.

Author Collaborations