Header

UZH-Logo

Maintenance Infos

Quantitative and dynamic assay of single cell chemotaxis - Zurich Open Repository and Archive


Lee, Sung Sik; Horvath, Peter; Pelet, Serge; Hegemann, Björn; Lee, Luke P; Peter, Matthias (2012). Quantitative and dynamic assay of single cell chemotaxis. Integrative Biology, 4(4):381.

Abstract

We have developed a single-cell assay platform that allows quantitative analysis of single cell chemotaxis by dynamic morphogenetic gradients, subcellular microscopic imaging and automated image analysis, and have applied these to measure cellular polarization of budding yeast. The computer-controlled microfluidic device regulates the gradient profile at any given time, and allows quantitative monitoring of cell morphology and the localization and expression of specific marker proteins during the dynamic polarization process. With this integrated experimental system, we compare the polarized signaling response of wild-type and far1-H7 mutant cells, which express a truncated Far1 protein unable to interact with Cdc24. Our results confirm that Far1 functions as an adaptor that recruits polarity establishment proteins to the site of extracellular signaling. Moreover, by changing the gradient profile and estimating the number of bound surface receptors, we quantitatively address why surprisingly small differences in pheromone concentration across yeast cells can be amplified into a robust polarity axis. This integrated single cell experimental platform thus opens the possibility to quantitatively investigate the molecular regulatory mechanism of chemotaxis in yeast, which serves as a paradigm to understand the fundamental processes involved in cancer metastasis, angiogenesis and axon generation.

Abstract

We have developed a single-cell assay platform that allows quantitative analysis of single cell chemotaxis by dynamic morphogenetic gradients, subcellular microscopic imaging and automated image analysis, and have applied these to measure cellular polarization of budding yeast. The computer-controlled microfluidic device regulates the gradient profile at any given time, and allows quantitative monitoring of cell morphology and the localization and expression of specific marker proteins during the dynamic polarization process. With this integrated experimental system, we compare the polarized signaling response of wild-type and far1-H7 mutant cells, which express a truncated Far1 protein unable to interact with Cdc24. Our results confirm that Far1 functions as an adaptor that recruits polarity establishment proteins to the site of extracellular signaling. Moreover, by changing the gradient profile and estimating the number of bound surface receptors, we quantitatively address why surprisingly small differences in pheromone concentration across yeast cells can be amplified into a robust polarity axis. This integrated single cell experimental platform thus opens the possibility to quantitatively investigate the molecular regulatory mechanism of chemotaxis in yeast, which serves as a paradigm to understand the fundamental processes involved in cancer metastasis, angiogenesis and axon generation.

Citations

18 citations in Web of Science®
20 citations in Scopus®
Google Scholar™

Altmetrics

Downloads

121 downloads since deposited on 11 Jul 2013
26 downloads since 12 months
Detailed statistics

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:Special Collections > SystemsX.ch
Special Collections > SystemsX.ch > Research, Technology and Development Projects > YeastX
Dewey Decimal Classification:570 Life sciences; biology
Language:English
Date:2012
Deposited On:11 Jul 2013 08:00
Last Modified:05 Apr 2016 16:51
Publisher:RSC Publishing
ISSN:1757-9694
Free access at:Publisher DOI. An embargo period may apply.
Publisher DOI:https://doi.org/10.1039/c2ib00144f

Download

Preview Icon on Download
Preview
Filetype: PDF
Size: 13MB
View at publisher

TrendTerms

TrendTerms displays relevant terms of the abstract of this publication and related documents on a map. The terms and their relations were extracted from ZORA using word statistics. Their timelines are taken from ZORA as well. The bubble size of a term is proportional to the number of documents where the term occurs. Red, orange, yellow and green colors are used for terms that occur in the current document; red indicates high interlinkedness of a term with other terms, orange, yellow and green decreasing interlinkedness. Blue is used for terms that have a relation with the terms in this document, but occur in other documents.
You can navigate and zoom the map. Mouse-hovering a term displays its timeline, clicking it yields the associated documents.

Author Collaborations