Header

UZH-Logo

Maintenance Infos

Four novel papillomavirus sequences support a broad diversity among equine papillomaviruses


Lange, C E; Vetsch, E; Ackermann, M; Favrot, C; Tobler, K (2013). Four novel papillomavirus sequences support a broad diversity among equine papillomaviruses. Journal of General Virology, 94(Pt 6):1365-1372.

Abstract

Papillomaviruses appear to be species-specific pathogens, and it was suggested that each animal species might harbour its own set of papillomaviruses. However, all approaches addressing the underlying evolutionary phenomena still suffer from very limited data about animal papillomaviruses. In case of the horse for example, only three equine papillomaviruses (EcPVs) have been identified. To further address the situation in this host, suspected papillomavirus-associated lesions were tested for EcPV DNA. Four novel EcPV types were detected and their genomes entirely cloned and sequenced. They display the characteristic organization, with early (E) and late (L) regions harbouring the seven classical open reading frames divided by non-coding regions. They were named EcPVs 4, 5, 6 and 7, according to their dissimilarity to other papillomaviruses. Most L1 nucleotide identities were shared with EcPV2 in case of EcPV4 (62 %) and EcPV5 (60 %) or with EcPV3 in case of EcPV6 (70 %) and EcPV7 (71 %). Thus, EcPVs 4 and 5 may establish novel species within the genus Dyoiota, while EcPVs 6 and 7 might fit into the genus Dyorho and belong to the same species as EcPV3. They were found in genital plaques (EcPV4), aural plaques (EcPV5, EcPV6) or penile masses (EcPV7). Interestingly, PCR analysis revealed the DNA of EcPV2 and EcPV4 as well as of EcPV3 and EcPV6 together in the same tissue samples, respectively. In conclusion, the DNA of four novel EcPV types was identified and cloned. They cluster with the known types and support broad genetic EcPV diversity in at least two of the known clades. Furthermore, PCR assays also provide evidence for EcPV co-infections in horses.

Abstract

Papillomaviruses appear to be species-specific pathogens, and it was suggested that each animal species might harbour its own set of papillomaviruses. However, all approaches addressing the underlying evolutionary phenomena still suffer from very limited data about animal papillomaviruses. In case of the horse for example, only three equine papillomaviruses (EcPVs) have been identified. To further address the situation in this host, suspected papillomavirus-associated lesions were tested for EcPV DNA. Four novel EcPV types were detected and their genomes entirely cloned and sequenced. They display the characteristic organization, with early (E) and late (L) regions harbouring the seven classical open reading frames divided by non-coding regions. They were named EcPVs 4, 5, 6 and 7, according to their dissimilarity to other papillomaviruses. Most L1 nucleotide identities were shared with EcPV2 in case of EcPV4 (62 %) and EcPV5 (60 %) or with EcPV3 in case of EcPV6 (70 %) and EcPV7 (71 %). Thus, EcPVs 4 and 5 may establish novel species within the genus Dyoiota, while EcPVs 6 and 7 might fit into the genus Dyorho and belong to the same species as EcPV3. They were found in genital plaques (EcPV4), aural plaques (EcPV5, EcPV6) or penile masses (EcPV7). Interestingly, PCR analysis revealed the DNA of EcPV2 and EcPV4 as well as of EcPV3 and EcPV6 together in the same tissue samples, respectively. In conclusion, the DNA of four novel EcPV types was identified and cloned. They cluster with the known types and support broad genetic EcPV diversity in at least two of the known clades. Furthermore, PCR assays also provide evidence for EcPV co-infections in horses.

Statistics

Citations

10 citations in Web of Science®
11 citations in Scopus®
Google Scholar™

Altmetrics

Downloads

36 downloads since deposited on 19 Jul 2013
8 downloads since 12 months
Detailed statistics

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:05 Vetsuisse Faculty > Institute of Virology
05 Vetsuisse Faculty > Veterinary Clinic > Department of Small Animals
Dewey Decimal Classification:570 Life sciences; biology
Language:English
Date:2013
Deposited On:19 Jul 2013 09:20
Last Modified:07 Dec 2017 21:42
Publisher:Society for General Microbiology
ISSN:0022-1317
Additional Information:This is an author manuscript that has been accepted for publication in Journal of General Virology, copyright Society for General Microbiology, but has not been copy-edited, formatted or proofed. Cite this article as appearing in Journal of General Virology. This version of the manuscript may not be duplicated or reproduced, other than for personal use or within the rule of ‘Fair Use of Copyrighted Materials’ (section 17, Title 17, US Code), without permission from the copyright owner, Society for General Microbiology. The Society for General Microbiology disclaims any responsibility or liability for errors or omissions in this version of the manuscript or in any version derived from it by any other parties. The final copy-edited, published article, which is the version of record, can be found at http://vir.sgmjournals.org, and is freely available without a subscription.
Free access at:Publisher DOI. An embargo period may apply.
Publisher DOI:https://doi.org/10.1099/vir.0.052092-0
PubMed ID:23486670

Download