Header

UZH-Logo

Maintenance Infos

Tetrahydrobiopterin, its mode of action on phenylalanine hydroxylase, and importance of genotypes for pharmacological therapy of phenylketonuria


Heintz, Caroline; Cotton, Richard G H; Blau, Nenad (2013). Tetrahydrobiopterin, its mode of action on phenylalanine hydroxylase, and importance of genotypes for pharmacological therapy of phenylketonuria. Human Mutation, 34(7):927-936.

Abstract

In about 20%-30% of phenylketonuria (PKU) patients (all phenotypes of PAH deficiency), Phe levels may be controlled through phenylalanine hydroxylase cofactor tetrahydrobiopterin therapy. These patients can be diagnosed by an oral tetrahydrobiopterin challenge and are characterized by mutations coding for proteins with substantial residual PAH activity. They can be treated with a commercially available synthetic form of tetrahydrobiopterin, either as a monotherapy or as adjunct to the diet. This review article summarizes molecular and metabolic bases of PKU and the importance of the tetrahydrobiopterin loading test used for PKU patients. On the basis of in vitro residual PAH activity, more than 1,200 genotypes from patients challenged with tetrahydrobiopterin were categorized as predictive for tetrahydrobiopterin responsiveness or non-responsiveness and correlated with the loading test, phenotype, and residual in vitro PAH activity. The coexpression of two distinct PAH mutant alleles revealed possible dominance effects (positive or negative) by one of the mutations on residual activity as result of interallelic complementation. The treatment of the transfected cells with tetrahydrobiopterin showed an increase in residual PAH activity with several mutations coexpressed.

Abstract

In about 20%-30% of phenylketonuria (PKU) patients (all phenotypes of PAH deficiency), Phe levels may be controlled through phenylalanine hydroxylase cofactor tetrahydrobiopterin therapy. These patients can be diagnosed by an oral tetrahydrobiopterin challenge and are characterized by mutations coding for proteins with substantial residual PAH activity. They can be treated with a commercially available synthetic form of tetrahydrobiopterin, either as a monotherapy or as adjunct to the diet. This review article summarizes molecular and metabolic bases of PKU and the importance of the tetrahydrobiopterin loading test used for PKU patients. On the basis of in vitro residual PAH activity, more than 1,200 genotypes from patients challenged with tetrahydrobiopterin were categorized as predictive for tetrahydrobiopterin responsiveness or non-responsiveness and correlated with the loading test, phenotype, and residual in vitro PAH activity. The coexpression of two distinct PAH mutant alleles revealed possible dominance effects (positive or negative) by one of the mutations on residual activity as result of interallelic complementation. The treatment of the transfected cells with tetrahydrobiopterin showed an increase in residual PAH activity with several mutations coexpressed.

Statistics

Citations

Dimensions.ai Metrics
27 citations in Web of Science®
27 citations in Scopus®
31 citations in Microsoft Academic
Google Scholar™

Altmetrics

Additional indexing

Item Type:Journal Article, refereed, further contribution
Communities & Collections:04 Faculty of Medicine > University Children's Hospital Zurich > Medical Clinic
04 Faculty of Medicine > Center for Integrative Human Physiology
Dewey Decimal Classification:570 Life sciences; biology
610 Medicine & health
Language:English
Date:2013
Deposited On:06 Aug 2013 07:09
Last Modified:16 Feb 2018 17:55
Publisher:Wiley-Blackwell
ISSN:1059-7794
OA Status:Closed
Publisher DOI:https://doi.org/10.1002/humu.22320
PubMed ID:23559577

Download

Full text not available from this repository.
View at publisher

Get full-text in a library