Header

UZH-Logo

Maintenance Infos

Biophysical network models and the human connectome


Woolrich, Mark W; Stephan, Klaas E (2013). Biophysical network models and the human connectome. NeuroImage, 80:330-338.

Abstract

A core goal of human connectomics is to characterise the neural pathways that underlie brain function. This can be largely achieved noninvasively by inferring white matter connectivity using diffusion MRI data. However, there are challenges. First, diffusion tractography is blind to directed connections, or whether a connection is expressed functionally. Second, we need to be able to go beyond the characterization of anatomical pathways, to understand distributed brain function that results from them. In particular, we need to characterise effective connectivity using functional imaging modalities, such as FMRI and M/EEG, to understand its context-sensitivity (e.g., modulation by task), and how it changes with synaptic plasticity. Here, we consider the critical role that biophysical network models have to play in meeting these challenges, by providing a principled way to conciliate information from anatomical and functional data. They also provide biophysically meaningful parameters, through which we can better understand brain function. In a translational setting, well-validated models may shed light on the mechanisms of individual disease processes.

Abstract

A core goal of human connectomics is to characterise the neural pathways that underlie brain function. This can be largely achieved noninvasively by inferring white matter connectivity using diffusion MRI data. However, there are challenges. First, diffusion tractography is blind to directed connections, or whether a connection is expressed functionally. Second, we need to be able to go beyond the characterization of anatomical pathways, to understand distributed brain function that results from them. In particular, we need to characterise effective connectivity using functional imaging modalities, such as FMRI and M/EEG, to understand its context-sensitivity (e.g., modulation by task), and how it changes with synaptic plasticity. Here, we consider the critical role that biophysical network models have to play in meeting these challenges, by providing a principled way to conciliate information from anatomical and functional data. They also provide biophysically meaningful parameters, through which we can better understand brain function. In a translational setting, well-validated models may shed light on the mechanisms of individual disease processes.

Statistics

Citations

23 citations in Web of Science®
29 citations in Scopus®
Google Scholar™

Altmetrics

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:04 Faculty of Medicine > Institute of Biomedical Engineering
Dewey Decimal Classification:170 Ethics
610 Medicine & health
Language:English
Date:2013
Deposited On:03 Sep 2013 11:36
Last Modified:05 Apr 2016 16:56
Publisher:Elsevier
ISSN:1053-8119
Publisher DOI:https://doi.org/10.1016/j.neuroimage.2013.03.059

Download

Full text not available from this repository.
View at publisher

TrendTerms

TrendTerms displays relevant terms of the abstract of this publication and related documents on a map. The terms and their relations were extracted from ZORA using word statistics. Their timelines are taken from ZORA as well. The bubble size of a term is proportional to the number of documents where the term occurs. Red, orange, yellow and green colors are used for terms that occur in the current document; red indicates high interlinkedness of a term with other terms, orange, yellow and green decreasing interlinkedness. Blue is used for terms that have a relation with the terms in this document, but occur in other documents.
You can navigate and zoom the map. Mouse-hovering a term displays its timeline, clicking it yields the associated documents.

Author Collaborations