Header

UZH-Logo

Maintenance Infos

TripleRush: a fast and scalable triple store


Stutz, P; Verman, Mihaela; Fischer, Lorenz; Bernstein, Abraham (2013). TripleRush: a fast and scalable triple store. In: 9th International Workshop on Scalable Semantic Web Knowledge Base Systems, Sydney, Australia, 21 October 2013 - 22 October 2013.

Abstract

TripleRush is a parallel in-memory triple store designed to address the need for efficient graph stores that answer queries over large-scale graph data fast. To that end it leverages a novel, graph-based architecture. Specifically, TripleRush is built on our parallel and distributed graph processing framework Signal/Collect. The index structure is represented as a graph where each index vertex corresponds to a triple pattern. Partially matched copies of a query are routed in parallel along different paths of this index structure. We show experimentally that TripleRush takes less than a third of the time to answer queries compared to the fastest of three state-of-the-art triple stores, when measuring time as the geometric mean of all queries for two benchmarks. On individual queries, TripleRush is up to three orders of magnitude faster than other triple stores.

Abstract

TripleRush is a parallel in-memory triple store designed to address the need for efficient graph stores that answer queries over large-scale graph data fast. To that end it leverages a novel, graph-based architecture. Specifically, TripleRush is built on our parallel and distributed graph processing framework Signal/Collect. The index structure is represented as a graph where each index vertex corresponds to a triple pattern. Partially matched copies of a query are routed in parallel along different paths of this index structure. We show experimentally that TripleRush takes less than a third of the time to answer queries compared to the fastest of three state-of-the-art triple stores, when measuring time as the geometric mean of all queries for two benchmarks. On individual queries, TripleRush is up to three orders of magnitude faster than other triple stores.

Statistics

Citations

Downloads

582 downloads since deposited on 04 Sep 2013
51 downloads since 12 months
Detailed statistics

Additional indexing

Item Type:Conference or Workshop Item (Paper), refereed, original work
Communities & Collections:03 Faculty of Economics > Department of Informatics
Dewey Decimal Classification:000 Computer science, knowledge & systems
Language:English
Event End Date:22 October 2013
Deposited On:04 Sep 2013 15:27
Last Modified:05 Aug 2017 00:35
Publisher:CEUR Workshop Proceedings
Other Identification Number:merlin-id:8317

Download

Preview Icon on Download
Preview
Filetype: PDF
Size: 427kB

TrendTerms

TrendTerms displays relevant terms of the abstract of this publication and related documents on a map. The terms and their relations were extracted from ZORA using word statistics. Their timelines are taken from ZORA as well. The bubble size of a term is proportional to the number of documents where the term occurs. Red, orange, yellow and green colors are used for terms that occur in the current document; red indicates high interlinkedness of a term with other terms, orange, yellow and green decreasing interlinkedness. Blue is used for terms that have a relation with the terms in this document, but occur in other documents.
You can navigate and zoom the map. Mouse-hovering a term displays its timeline, clicking it yields the associated documents.

Author Collaborations