Header

UZH-Logo

Maintenance Infos

RPGR mutations might cause reduced orientation of respiratory cilia


Abstract

RPGR gene encodes retinitis pigmentosa guanosine triphosphatase regulator protein, mutations of which cause 70% of the X-linked retinitis pigmentosa (XLRP) cases. Rarely, RPGR mutations can also cause primary ciliary dyskinesia (PCD), a multisystem disorder characterized by recurrent respiratory tract infections, sinusitis, bronchiectasis, and male subfertility. Two patients with PCD_RP and their relatives were analyzed using DNA sequencing, transmission electron microscopy (TEM), immunofluorescence (IF), photometry, and high-speed videomicroscopy. The Polish patient carried a previously known c.154G>A substitution (p.Gly52Arg) in exon 2 (known to affect splicing); the mutation was co-segregating with the XLRP symptoms in his family. The c.824 G>T mutation (p. Gly275Val) in the Australian patient was a de novo mutation. In both patients, TEM and IF did not reveal any changes in the respiratory cilia structure. However, following ciliogenesis in vitro, in contrast to the ciliary beat frequency, the ciliary beat coordination in the spheroids from the Polish proband and his relatives carrying the c.154G>A mutation was reduced. Analysis of the ciliary alignment indicated severely disturbed orientation of cilia. Therefore, we confirm that defects in the RPGR protein may contribute to syndromic PCD. Lack of ultrastructural defects in respiratory cilia of the probands, the reduced ciliary orientation and the decreased coordination of the ciliary bundles observed in the Polish patient suggested that the RPGR protein may play a role in the establishment of the proper respiratory cilia orientation.

Abstract

RPGR gene encodes retinitis pigmentosa guanosine triphosphatase regulator protein, mutations of which cause 70% of the X-linked retinitis pigmentosa (XLRP) cases. Rarely, RPGR mutations can also cause primary ciliary dyskinesia (PCD), a multisystem disorder characterized by recurrent respiratory tract infections, sinusitis, bronchiectasis, and male subfertility. Two patients with PCD_RP and their relatives were analyzed using DNA sequencing, transmission electron microscopy (TEM), immunofluorescence (IF), photometry, and high-speed videomicroscopy. The Polish patient carried a previously known c.154G>A substitution (p.Gly52Arg) in exon 2 (known to affect splicing); the mutation was co-segregating with the XLRP symptoms in his family. The c.824 G>T mutation (p. Gly275Val) in the Australian patient was a de novo mutation. In both patients, TEM and IF did not reveal any changes in the respiratory cilia structure. However, following ciliogenesis in vitro, in contrast to the ciliary beat frequency, the ciliary beat coordination in the spheroids from the Polish proband and his relatives carrying the c.154G>A mutation was reduced. Analysis of the ciliary alignment indicated severely disturbed orientation of cilia. Therefore, we confirm that defects in the RPGR protein may contribute to syndromic PCD. Lack of ultrastructural defects in respiratory cilia of the probands, the reduced ciliary orientation and the decreased coordination of the ciliary bundles observed in the Polish patient suggested that the RPGR protein may play a role in the establishment of the proper respiratory cilia orientation.

Statistics

Citations

22 citations in Web of Science®
23 citations in Scopus®
Google Scholar™

Altmetrics

Downloads

1 download since deposited on 20 Sep 2013
0 downloads since 12 months
Detailed statistics

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:04 Faculty of Medicine > Center for Integrative Human Physiology
04 Faculty of Medicine > Institute of Medical Molecular Genetics
Dewey Decimal Classification:570 Life sciences; biology
610 Medicine & health
Language:English
Date:2013
Deposited On:20 Sep 2013 06:41
Last Modified:07 Dec 2017 22:22
Publisher:Wiley-Blackwell
ISSN:1099-0496
Free access at:Publisher DOI. An embargo period may apply.
Publisher DOI:https://doi.org/10.1002/ppul.22632
PubMed ID:22888088

Download