Header

UZH-Logo

Maintenance Infos

Identification of a Photosystem II Phosphatase Involved in Light Acclimation in Arabidopsis


Samol, I; Shapiguzov, A; Ingelsson, B; Fucile, G; Crevecoeur, M; Vener, A V; Rochaix, J -D; Goldschmidt-Clermont, M (2012). Identification of a Photosystem II Phosphatase Involved in Light Acclimation in Arabidopsis. Plant Cell, 24(6):2596-2609.

Abstract

Reversible protein phosphorylation plays a major role in the acclimation of the photosynthetic apparatus to changes in light. Two paralogous kinases phosphorylate subsets of thylakoid membrane proteins. STN7 phosphorylates LHCII, the light harvesting antenna of photosystem II (PSII), to balance the activity of the two photosystems through state transitions. STN8, which is mainly involved in phosphorylation of PSII core subunits, influences folding of the thylakoid membranes and repair of PSII after photo-damage. The rapid reversibility of these acclimatory responses requires the action of protein phosphatases. In a reverse genetic screen we have identified the chloroplast PP2C phosphatase, PBCP (PHOTOSYSTEM II CORE PHOSPHATASE), which is required for efficient de-phosphorylation of PSII proteins. Its targets, identified by immunoblotting and mass spectrometry, largely coincide with those of the kinase STN8. The recombinant phosphatase is active in vitro on a synthetic substrate or on isolated thylakoids. Thylakoid folding is affected in the absence of PBCP, while its over-expression alters the kinetics of state transitions. PBCP and STN8 form an antagonistic kinase and phosphatase pair whose substrate specificity and physiological functions are distinct from those of STN7 and the counteracting phosphatase PPH1 (TAP38), but their activities may overlap to some degree.

Abstract

Reversible protein phosphorylation plays a major role in the acclimation of the photosynthetic apparatus to changes in light. Two paralogous kinases phosphorylate subsets of thylakoid membrane proteins. STN7 phosphorylates LHCII, the light harvesting antenna of photosystem II (PSII), to balance the activity of the two photosystems through state transitions. STN8, which is mainly involved in phosphorylation of PSII core subunits, influences folding of the thylakoid membranes and repair of PSII after photo-damage. The rapid reversibility of these acclimatory responses requires the action of protein phosphatases. In a reverse genetic screen we have identified the chloroplast PP2C phosphatase, PBCP (PHOTOSYSTEM II CORE PHOSPHATASE), which is required for efficient de-phosphorylation of PSII proteins. Its targets, identified by immunoblotting and mass spectrometry, largely coincide with those of the kinase STN8. The recombinant phosphatase is active in vitro on a synthetic substrate or on isolated thylakoids. Thylakoid folding is affected in the absence of PBCP, while its over-expression alters the kinetics of state transitions. PBCP and STN8 form an antagonistic kinase and phosphatase pair whose substrate specificity and physiological functions are distinct from those of STN7 and the counteracting phosphatase PPH1 (TAP38), but their activities may overlap to some degree.

Statistics

Citations

73 citations in Web of Science®
75 citations in Scopus®
Google Scholar™

Altmetrics

Downloads

34 downloads since deposited on 11 Sep 2013
7 downloads since 12 months
Detailed statistics

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:Special Collections > SystemsX.ch
Special Collections > SystemsX.ch > Research, Technology and Development Projects > Plant Growth
Special Collections > SystemsX.ch > Research, Technology and Development Projects
Dewey Decimal Classification:570 Life sciences; biology
Language:English
Date:2012
Deposited On:11 Sep 2013 15:48
Last Modified:05 Apr 2016 16:58
Publisher:American Society of Plant Biologists
ISSN:1040-4651
Free access at:Publisher DOI. An embargo period may apply.
Publisher DOI:https://doi.org/10.1105/tpc.112.095703

Download

Preview Icon on Download
Preview
Content: Submitted Version
Filetype: PDF
Size: 3MB
View at publisher

Article Networks

TrendTerms

TrendTerms displays relevant terms of the abstract of this publication and related documents on a map. The terms and their relations were extracted from ZORA using word statistics. Their timelines are taken from ZORA as well. The bubble size of a term is proportional to the number of documents where the term occurs. Red, orange, yellow and green colors are used for terms that occur in the current document; red indicates high interlinkedness of a term with other terms, orange, yellow and green decreasing interlinkedness. Blue is used for terms that have a relation with the terms in this document, but occur in other documents.
You can navigate and zoom the map. Mouse-hovering a term displays its timeline, clicking it yields the associated documents.

Author Collaborations