Erratum: Cores in warm dark matter haloes: a Catch 22 problem

Macciò, A V; Paduroiu, S; Anderhalden, D; Schneider, A; Moore, B

DOI: https://doi.org/10.1093/mnras/sts251

Posted at the Zurich Open Repository and Archive, University of Zurich
ZORA URL: https://doi.org/10.5167/uzh-80944

Originally published at:
DOI: https://doi.org/10.1093/mnras/sts251
Erratum: Cores in warm dark matter haloes: a \textit{Catch 22} problem

By Andrea V. Macciò,1⋆ Sinziana Paduroiu,2 Donnino Anderhalden,3
Aurel Schneider3 and Ben Moore3

1Max-Planck-Institute for Astronomy, Königstuhl 17, D-69117 Heidelberg, Germany
2Geneva Observatory, University of Geneva, CH-1290 Sauverny, Switzerland
3Institute for Theoretical Physics, University of Zürich, CH-8057 Zürich, Switzerland

Key words: Errata, addenda: Dark matter: \textit{N}-body simulations – galaxies, haloes.

Table 1. Simulations parameters.

<table>
<thead>
<tr>
<th>Label</th>
<th>m_ν (keV)</th>
<th>m_ν,vel (keV)</th>
<th>N_{vir} (106)</th>
<th>M_{vir} (10^{12} M$_\odot$)</th>
</tr>
</thead>
<tbody>
<tr>
<td>CDM</td>
<td>∞</td>
<td>–</td>
<td>10.2</td>
<td>1.42</td>
</tr>
<tr>
<td>WDM1</td>
<td>2.0</td>
<td>1.32</td>
<td>8.6</td>
<td>1.22</td>
</tr>
<tr>
<td>WDM2</td>
<td>2.0</td>
<td>0.33</td>
<td>8.4</td>
<td>1.20</td>
</tr>
<tr>
<td>WDM3</td>
<td>2.0</td>
<td>0.13</td>
<td>8.5</td>
<td>1.21</td>
</tr>
<tr>
<td>WDM4</td>
<td>2.0</td>
<td>0.15</td>
<td>6.7</td>
<td>0.93</td>
</tr>
<tr>
<td>WDM5-N</td>
<td>2.0</td>
<td>0.05</td>
<td>4.9</td>
<td>0.71</td>
</tr>
<tr>
<td>WDM5</td>
<td>2.0</td>
<td>0.03</td>
<td>5.1</td>
<td>0.82</td>
</tr>
</tbody>
</table>

Figure 1. Comparison between core size in simulations (open symbols) and the theoretical expectation for a $M = 10^{12}$ M$_\odot$ halo (solid line). The dashed horizontal line is the gravitational softening of our simulations. All points below this line should be considered as upper limits on the core size. The red dashed line is a linear fit to the simulation results.

⋆E-mail: maccio@mpia.de

© 2012 The Authors
Published by Oxford University Press on behalf of the Royal Astronomical Society

In the code to create the initial conditions we treated the 3D thermal velocity [equation (4) in the original work] as a one dimensional velocity, overestimating then the velocity by a factor $\sqrt{3}$. The main conclusions, however, do not change significantly.

More specifically, given the relation between the mass of the thermal candidate (m_ν) and the thermal velocity, this implies that the velocities we use in the ICs were for a particle mass lower by a factor $3^{1/4} \approx 1.51$. In Table 1 we list the corrected values of the masses, we have also added a new simulation with the corrected velocities for the $m_\nu = 0.05$ keV case. These new masses for the WDM candidates have an effect on the core size-WDM mass relation, which is shown in Fig. 1 (this figure updates fig. 7 in the printed version of the paper). It is clear that simulations results are not well reproduced by our simple analytic argument based on the pseudo phase space density $Q = \rho/\sigma^3$. We need to reduce the ‘theoretical’ core estimation by 60 per cent in order to fit the simulation points (red dashed line in the figure). This in agreement with recent results.
Erratum

by Shao et al. (2012) that also find that Q overestimates the real maximum phase space density.

This even smaller core makes our original statements even stronger, as shown by Fig. 2, where using our new determination of the core size as a function of the warm dark matter mass we compute the expected value of r_{core} for the typical halo mass ($5 \times 10^8 \, M_\odot$) of dwarf galaxies orbiting the Milky-Way (fig. 2).

These new, corrected values for the core size in dwarf galaxies make the conclusions of our paper even stronger, and the “Catch 22” problem for warm dark matter still holds:

\textit{If you want a large core you won’t get the galaxy, if you get the galaxy it won’t have a large core.}

ACKNOWLEDGMENTS

We thank Shi Shao and Liang Gao who helped us finding this mistake.

REFERENCES

This paper has been typeset from a \TeX/\LaTeX file prepared by the author.