Header

UZH-Logo

Maintenance Infos

Mass transport in CuInSe2 from first principles


Oikkonen, L E; Ganchenkova, M G; Seitsonen, A P; Nieminen, R M (2013). Mass transport in CuInSe2 from first principles. Journal of Applied Physics, 113(13):133510.

Abstract

The wide scatter in experimental results has not allowed drawing solid conclusions on self-diffusion in the chalcopyrite CuInSe2 (CIS). In this work, the defect-assisted mass transport mechanisms operating in CIS are clarified using first-principles calculations. We present how the stoichiometry of the material and temperature affect the dominant diffusion mechanisms. The most mobile species in CIS is shown to be copper, whose migration proceeds either via copper vacancies or interstitials. Both of these mass-mediating agents exist in the material abundantly and face rather low migration barriers (1.09 and 0.20 eV, respectively). Depending on chemical conditions, selenium mass transport relies either solely on selenium dumbbells, which diffuse with a barrier of 0.24 eV, or also on selenium vacancies whose diffusion is hindered by a migration barrier of 2.19 eV. Surprisingly, indium plays no role in long-range mass transport in CIS; instead, indium vacancies and interstitials participate in mechanisms that promote the formation of antisites on the cation sublattice. Our results help to understand how compositional inhomogeneities arise in CIS.

Abstract

The wide scatter in experimental results has not allowed drawing solid conclusions on self-diffusion in the chalcopyrite CuInSe2 (CIS). In this work, the defect-assisted mass transport mechanisms operating in CIS are clarified using first-principles calculations. We present how the stoichiometry of the material and temperature affect the dominant diffusion mechanisms. The most mobile species in CIS is shown to be copper, whose migration proceeds either via copper vacancies or interstitials. Both of these mass-mediating agents exist in the material abundantly and face rather low migration barriers (1.09 and 0.20 eV, respectively). Depending on chemical conditions, selenium mass transport relies either solely on selenium dumbbells, which diffuse with a barrier of 0.24 eV, or also on selenium vacancies whose diffusion is hindered by a migration barrier of 2.19 eV. Surprisingly, indium plays no role in long-range mass transport in CIS; instead, indium vacancies and interstitials participate in mechanisms that promote the formation of antisites on the cation sublattice. Our results help to understand how compositional inhomogeneities arise in CIS.

Statistics

Citations

14 citations in Web of Science®
14 citations in Scopus®
Google Scholar™

Altmetrics

Downloads

196 downloads since deposited on 15 Nov 2013
25 downloads since 12 months
Detailed statistics

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:07 Faculty of Science > Department of Chemistry
Dewey Decimal Classification:540 Chemistry
Language:English
Date:2013
Deposited On:15 Nov 2013 13:13
Last Modified:20 May 2016 07:45
Publisher:American Institute of Physics
ISSN:0021-8979
Free access at:Publisher DOI. An embargo period may apply.
Publisher DOI:https://doi.org/10.1063/1.4799064

Download

Download PDF  'Mass transport in CuInSe2 from first principles'.
Preview
Content: Accepted Version
Filetype: PDF
Size: 325kB
View at publisher
Download PDF  'Mass transport in CuInSe2 from first principles'.
Preview
Content: Published Version
Filetype: PDF
Size: 663kB