Header

UZH-Logo

Maintenance Infos

Analysis of carbon and nitrogen dynamics in riparian soils: Model validation and sensitivity to environmental controls


Batlle-Aguilar, J; Brovelli, A; Luster, J; Shrestha, J; Niklaus, P A; Barry, D A (2012). Analysis of carbon and nitrogen dynamics in riparian soils: Model validation and sensitivity to environmental controls. Science of the Total Environment, 429:246-256.

Abstract

The Riparian Soil Model (RSM) of Brovelli et al. (2012) was applied to study soil nutrient turnover in a revitalized section of the Thur River, North-East Switzerland. In the present work, the model was calibrated on field experimental data, and satisfactorily reproduced soil respiration, organic matter stocks and inorganic nitrogen fluxes. Calibrated rates were in good agreement with the ranges reported in the literature. The main discrepancies between model and observations were for dissolved organic carbon. The sensitivity of the model to environmental factors was also analyzed. Soil temperature was the most influential factor at daily and seasonal scales while effects of soil moisture were weak overall. The ecosystem sensitivity to temperature changes was quantified using the Q10 index. The seasonal behavior observed was related to the influence of other forcing factors and to the different state (density and activity) of the microbial biomass pool during the year. Environmental factors influencing microbial decomposition, such as the C:N ratio and litter input rate, showed intermediate sensitivity. Since these parameters are tightly linked to the vegetation type, the analysis highlighted the effect of the aboveground ecosystem on soil functioning.

Abstract

The Riparian Soil Model (RSM) of Brovelli et al. (2012) was applied to study soil nutrient turnover in a revitalized section of the Thur River, North-East Switzerland. In the present work, the model was calibrated on field experimental data, and satisfactorily reproduced soil respiration, organic matter stocks and inorganic nitrogen fluxes. Calibrated rates were in good agreement with the ranges reported in the literature. The main discrepancies between model and observations were for dissolved organic carbon. The sensitivity of the model to environmental factors was also analyzed. Soil temperature was the most influential factor at daily and seasonal scales while effects of soil moisture were weak overall. The ecosystem sensitivity to temperature changes was quantified using the Q10 index. The seasonal behavior observed was related to the influence of other forcing factors and to the different state (density and activity) of the microbial biomass pool during the year. Environmental factors influencing microbial decomposition, such as the C:N ratio and litter input rate, showed intermediate sensitivity. Since these parameters are tightly linked to the vegetation type, the analysis highlighted the effect of the aboveground ecosystem on soil functioning.

Statistics

Citations

6 citations in Web of Science®
9 citations in Scopus®
Google Scholar™

Altmetrics

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:07 Faculty of Science > Institute of Evolutionary Biology and Environmental Studies
Dewey Decimal Classification:570 Life sciences; biology
590 Animals (Zoology)
Language:English
Date:2012
Deposited On:26 Feb 2015 11:33
Last Modified:05 Apr 2016 17:04
Publisher:Elsevier
ISSN:0048-9697
Publisher DOI:https://doi.org/10.1016/j.scitotenv.2012.04.026

Download

Full text not available from this repository.
View at publisher

Article Networks

TrendTerms

TrendTerms displays relevant terms of the abstract of this publication and related documents on a map. The terms and their relations were extracted from ZORA using word statistics. Their timelines are taken from ZORA as well. The bubble size of a term is proportional to the number of documents where the term occurs. Red, orange, yellow and green colors are used for terms that occur in the current document; red indicates high interlinkedness of a term with other terms, orange, yellow and green decreasing interlinkedness. Blue is used for terms that have a relation with the terms in this document, but occur in other documents.
You can navigate and zoom the map. Mouse-hovering a term displays its timeline, clicking it yields the associated documents.

Author Collaborations