Header

UZH-Logo

Maintenance Infos

HMOX1 and GST variants modify attenuation of FEF25-75% decline due to PM10 reduction


Curjuric, I; Imboden, M; Schindler, C; Downs, S H; Hersberger, M; Liu, S L J; Matyas, G; Russi, E W; Schwartz, J; Thun, G A; Postma, D S; Rochat, T; Probst-Hensch, N M (2010). HMOX1 and GST variants modify attenuation of FEF25-75% decline due to PM10 reduction. European Respiratory Journal, 35(3):505-514.

Abstract

Reduced exposure to particulate matter with a 50% cut-off aerodynamic diameter of 10 microm (PM(10)) attenuated age-related lung function decline in our cohort, particularly in the small airways. We hypothesised that polymorphisms in glutathione S-transferase (GST) and haem oxygenase-1 (HMOX1) genes, important for oxidative stress defence, modify these beneficial effects. A population-based sample of 4,365 adults was followed up after 11 yrs, including questionnaire, spirometry and DNA blood sampling. PM(10) exposure was estimated by dispersion modelling and temporal interpolation. The main effects on annual decline in forced expiratory flow at 25-75% of forced vital capacity (FEF(25-75%)) and interactions with PM(10) reduction were investigated for polymorphisms HMOX1 rs2071746 (T/A), rs735266 (T/A) and rs5995098 (G/C), HMOX1 (GT)(n) promoter repeat, GSTM1 and GSTT1 deletions, and GSTP1 p.Ile105Val, using mixed linear regression models. HMOX1 rs5995098, HMOX1 haplotype TTG and GSTP1 showed significant genetic main effects. Interactions with PM(10) reduction were detected: a 10 microg.m(-3) reduction significantly attenuated annual FEF(25-75%) decline by 15.3 mL.s(-1) only in the absence of HMOX1 haplotype ATC. Similarly, carriers of long (GT)(n) promoter repeat alleles or the GSTP1 Val/Val genotype profited significantly more from a 10 microg.m(-3) reduction (26.5 mL.s(-1) and 27.3 mL.s(-1) respectively) than non-carriers. Benefits of a reduction in PM(10) exposure are not equally distributed across the population but are modified by the individual genetic make-up determining oxidative stress defence.

Abstract

Reduced exposure to particulate matter with a 50% cut-off aerodynamic diameter of 10 microm (PM(10)) attenuated age-related lung function decline in our cohort, particularly in the small airways. We hypothesised that polymorphisms in glutathione S-transferase (GST) and haem oxygenase-1 (HMOX1) genes, important for oxidative stress defence, modify these beneficial effects. A population-based sample of 4,365 adults was followed up after 11 yrs, including questionnaire, spirometry and DNA blood sampling. PM(10) exposure was estimated by dispersion modelling and temporal interpolation. The main effects on annual decline in forced expiratory flow at 25-75% of forced vital capacity (FEF(25-75%)) and interactions with PM(10) reduction were investigated for polymorphisms HMOX1 rs2071746 (T/A), rs735266 (T/A) and rs5995098 (G/C), HMOX1 (GT)(n) promoter repeat, GSTM1 and GSTT1 deletions, and GSTP1 p.Ile105Val, using mixed linear regression models. HMOX1 rs5995098, HMOX1 haplotype TTG and GSTP1 showed significant genetic main effects. Interactions with PM(10) reduction were detected: a 10 microg.m(-3) reduction significantly attenuated annual FEF(25-75%) decline by 15.3 mL.s(-1) only in the absence of HMOX1 haplotype ATC. Similarly, carriers of long (GT)(n) promoter repeat alleles or the GSTP1 Val/Val genotype profited significantly more from a 10 microg.m(-3) reduction (26.5 mL.s(-1) and 27.3 mL.s(-1) respectively) than non-carriers. Benefits of a reduction in PM(10) exposure are not equally distributed across the population but are modified by the individual genetic make-up determining oxidative stress defence.

Statistics

Citations

18 citations in Web of Science®
15 citations in Scopus®
Google Scholar™

Altmetrics

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:04 Faculty of Medicine > University Hospital Zurich > Institute of Clinical Chemistry
Dewey Decimal Classification:610 Medicine & health
540 Chemistry
Language:English
Date:2010
Deposited On:29 Oct 2013 08:08
Last Modified:05 Apr 2016 17:04
Publisher:European Respiratory Society
ISSN:0903-1936
Free access at:Publisher DOI. An embargo period may apply.
Publisher DOI:https://doi.org/10.1183/09031936.00044309
PubMed ID:20190330

Download

Full text not available from this repository.
View at publisher