Header

UZH-Logo

Maintenance Infos

The focus of attention in working memory - from metaphors to mechanisms


Oberauer, Klaus (2013). The focus of attention in working memory - from metaphors to mechanisms. Frontiers in Human Neuroscience:7:673.

Abstract

Many verbal theories describe working memory (WM) in terms of physical metaphors such as information flow or information containers. These metaphors are often useful but can also be misleading. This article contrasts the verbal version of the author’s three-embedded-component theory with a computational implementation of the theory. The analysis focuses on phenomena that have been attributed to the focus of attention in WM. The verbal theory characterizes the focus of attention by a container metaphor, which gives rise to questions such as: how many items fit into the focus? The computational model explains the same phenomena mechanistically through a combination of strengthened bindings between items and their retrieval cues, and priming of these cues. The author applies the computational model to three findings that have been used to argue about how many items can be held in the focus of attention (Oberauer and Bialkova, 2009; Gilchrist and Cowan, 2011; Oberauer and Bialkova, 2011). The modeling results imply a new interpretation of those findings: The different patterns of results across those studies don’t imply different capacity estimates for the focus of attention; they rather reflect to what extent retrieval from WM is parallel or serial.

Abstract

Many verbal theories describe working memory (WM) in terms of physical metaphors such as information flow or information containers. These metaphors are often useful but can also be misleading. This article contrasts the verbal version of the author’s three-embedded-component theory with a computational implementation of the theory. The analysis focuses on phenomena that have been attributed to the focus of attention in WM. The verbal theory characterizes the focus of attention by a container metaphor, which gives rise to questions such as: how many items fit into the focus? The computational model explains the same phenomena mechanistically through a combination of strengthened bindings between items and their retrieval cues, and priming of these cues. The author applies the computational model to three findings that have been used to argue about how many items can be held in the focus of attention (Oberauer and Bialkova, 2009; Gilchrist and Cowan, 2011; Oberauer and Bialkova, 2011). The modeling results imply a new interpretation of those findings: The different patterns of results across those studies don’t imply different capacity estimates for the focus of attention; they rather reflect to what extent retrieval from WM is parallel or serial.

Statistics

Citations

13 citations in Web of Science®
22 citations in Scopus®
Google Scholar™

Altmetrics

Downloads

41 downloads since deposited on 29 Oct 2013
18 downloads since 12 months
Detailed statistics

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:06 Faculty of Arts > Institute of Psychology
Dewey Decimal Classification:150 Psychology
Language:English
Date:2013
Deposited On:29 Oct 2013 08:06
Last Modified:05 Aug 2017 10:42
Publisher:Frontiers Research Foundation
ISSN:1662-5161
Free access at:PubMed ID. An embargo period may apply.
Publisher DOI:https://doi.org/10.3389/fnhum.2013.00673
PubMed ID:24146644

Download

Preview Icon on Download
Preview
Content: Published Version
Filetype: PDF
Size: 2MB
View at publisher
Licence: Creative Commons: Attribution 3.0 Unported (CC BY 3.0)

TrendTerms

TrendTerms displays relevant terms of the abstract of this publication and related documents on a map. The terms and their relations were extracted from ZORA using word statistics. Their timelines are taken from ZORA as well. The bubble size of a term is proportional to the number of documents where the term occurs. Red, orange, yellow and green colors are used for terms that occur in the current document; red indicates high interlinkedness of a term with other terms, orange, yellow and green decreasing interlinkedness. Blue is used for terms that have a relation with the terms in this document, but occur in other documents.
You can navigate and zoom the map. Mouse-hovering a term displays its timeline, clicking it yields the associated documents.

Author Collaborations